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Summary  An overview of wind farm control approaches is presented which recognize that wind 
turbines in a wind farm are coupled through their wakes. Four of these approaches are 
demonstrated for a common wind farm. Two wind farm control objectives are considered (not to 
exceed and to track a given power demand) and compared to the uncontrolled situation. For an 
ambient wind speed lower than the nominal wind speed two approaches are found to provide 
power references for the individual turbines that track total power demand. For ambient wind 
speed higher than nominal this is achieved by three approaches. The fourth approach, which 
has control objective not to exceed rather than to track given power demand, redistributes 
power references over the more upstream wind turbines. 
 
 
1 Introduction 
 
Wind farms are expected to operate similar to other power plants and to provide quality power 
at the lowest cost [1, 2]. This is achieved by control objectives at farm level, e.g. to track power 
reference while minimizing fatigue loading. These objectives have been addressed at wind 
turbine level for several years [3], but studies at wind farm level are few to date [4, 5, 6]. 
 
In this paper first an overview is given of wind farm control approaches which consider a wind 
farm as control object. These approaches include a decentralized dynamic state-space model 
[7], a model based on the control strategy of a variable speed variable pitch wind turbine [8], a 
supervisory/reconfigurable model [9, 10] and a stationary wind turbine interaction model [11]. 
 Subsequently, another approach is introduced: the inverse mode of a quasi-steady wind 
farm flow model. The quasi-steady wind farm flow model relates external conditions of a wind 
farm (wind speed, wind direction, turbulence intensity) to state (rotor speed, pitch angle) and 
output (power production, mechanical loading) of all turbines in the wind farm [12]. In inverse 
mode, power reference is input variable whereas the other quantities are output variables. 
 The paper concludes with a demonstration of several control approaches. To this end a 
common wind farm is studied. The simulations are performed with four of the described wind 
farm control approaches. 
 
 
2 Wind farm control approaches 
 
In this section an overview is presented of wind farm control approaches which consider a wind 
farm as control object. In these approaches it is recognized that wind turbines in a wind farm are 
coupled through their wakes. 
 
Johnson and Thomas describe a wind farm simulation model to be used in testing of wind farm 
controllers and discuss control strategies to maximize power production of wind farms [5]. Their 
simulation model calculates power production of each wind turbine given turbine positions, 
ambient wind speed, and wind speed deficit in the (overlapping) wakes. A combination of 



iterative learning control an iterative feedback tuning is proposed in order to reduce wind farm 
losses. To this end a control objective is proposed which maximizes the total wind farm power 
for a given ambient wind speed by using two individual turbine control variables: blade pitch 

ngle and tip-speed ratio. 

r by 
roportional distribution. (Total demanded power is power requested by the grid operator.) 

 is based on the wind turbine control 

l fatigue loading. (Total 

 extracted, the wind farm controller provides rotor 
peed references for the individual turbines. 

ifferent time scales [9, 10]. This concept is the basis of a two-level wind farm control 
on

ines are used as constraints (upper limits) for the power 

explicit expressions in parameters representing 
easurements, references and constraints. 

be determined from mean and standard deviation of wind speed at its 
closest neighbors. 

a
 
The wind farm simulation model of Soltani et al. includes sub-models for the wind turbines, the 
wind field, the wind farm controller, and the grid operator [7]. The wind farm controller is the 
interface between the grid operator and the individual wind turbine controllers. It provides output 
to the grid operator and to the wind farm. Output to the grid operator consists of prediction of 
available power in the wind farm on basis of prediction of available power of the individual wind 
turbines. (Available power is the maximum power that can be extracted given the ambient wind.) 
Output to the wind farm consists of power references for the controllers of the individual wind 
turbines. These power references are determined from the total demanded powe
p
 
The wind farm controller of Soleimanzadeh and Wisniewsky
strategy of a variable speed variable pitch wind turbine [8]. 
 If wind speed is higher than the nominal wind speed, the wind farm controller provides 
power reference and blade pitch angle reference for the control system of each individual wind 
turbine in the wind farm. The collective turbine power references track the total demanded 
power. In addition the turbine blade pitch angle references minimize tota
fatigue loading is sum of fatigue loading of the individual wind turbines.) 
 If wind speed is lower than the nominal wind speed, there are two options to control a wind 
farm: to track the total demanded power if this is less than the available power, or, otherwise, to 
extract the available power. If demanded power is less than available power, the wind farm 
controller provides power references and blade pitch angle references for the individual turbines 
in such a way that total demanded power is tracked and collective turbine loading is minimized. 
If on the other hand available power is to be
s
 
Spudić et al. and Savvidis and Van der Molen recognize that wind farm dynamics are decoupled 
through d
c cept. 
 The high level of control acts on the mean flow in a wind farm and for that reason accounts 
for coupling of turbines via their wakes. This control level sets the optimal operating point for 
each individual wind turbine in a wind farm. It works at a relatively slow sampling rate that 
scales with the mean wind speed and the size of the wind farm. Savvidis and Van der Molen 
describe a high-level controller which is based on model-based predictive control employing a 
cost function [10]. The reference for this controller is the total demanded power. In addition, an 
objective of this controller is to minimize the fatigue loads of the individual wind turbines. The 
available powers of the individual turb
references of the individual turbines. 
 The low level of control, on the other hand, reacts to disturbances like cut-outs or gusts. 
This control level adjusts the operating point in such a way that as soon as possible the total 
demanded power is tracked again. It works at a relatively fast sampling rate. Spudić et al. 
introduce a solution for the low-level control problem which is based on multi-parametric solution 
of the constrained finite time optimal control problem for each wind turbine [9]. Here optimal 
control action and cost are obtained as 
m
 
The stationary wind farm control model of Madjidian and Rantzer consists of a sub-model for the 
ambient wind, a sub-model for the turbines, and a sub-model for the interaction between the 
turbines in a farm [11]. Ambient wind is modeled as a mean wind speed superimposed with 
fluctuations. A turbine is modeled by its power and thrust curves, and has a control variable 
which is generator torque and/or blade pitch angle for an uncontrolled turbine or power 
reference for a controlled turbine. Wind turbine interaction is modeled in such a way that wind 
speed at a turbine can 
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Figure 1 Sub-model structure of the quasi-steady wind farm model 
 

Forward
({ {WS, BPA, RS}iklm, {Power, Loads}iklm) = f( {WSk, WDl, TIm} )

state                             output         external conditions

Inverse
({WSk, WDl, TIm}, {WS, BPA, RS}iklm, {Loads}iklm) = g( {Power}iklm )
external conditions            state                       loads               power reference  

 
Figure 2 Description of forward and inverse mode of the quasi-steady wind farm model. The 
model relates external conditions of a wind farm (wind speed WS, wind direction WD, 
turbulence intensity TI) to state (rotor speed RS, pitch angle BPA) and output (power production 
Power, mechanical loading Loads) of all turbines in the wind farm 
 
 
The control model based on the control strategy of a variable speed variable pitch wind turbine 
[8], the supervisory part of the supervisory/reconfigurable control model [10] and the stationary 
wind farm control model [11] are demonstrated in section 4 of this paper. 
 
 
3 Quasi-steady wind farm control model 
 
The quasi-steady wind farm model relates external conditions of a wind farm (wind speed, wind 
direction, turbulence intensity) to state (rotor speed, pitch angle) and output (power production, 
mechanical loading) of all turbines in the wind farm [12]. This model consists of a sub-model of 
the wind turbine, a sub-model of the wind turbine wake, and a sub-model of the cluster of wind 
turbines (figure 1). 
 The model parameters include coordinates of the wind turbines in the wind farm and the 
following turbine parameters: hub height and rotor diameter, thrust coefficient as a function of 
tip-speed ratio and blade pitch angle, and rotor speed and blade pitch angle as a function of 
wind speed. 
 The model output consists of a look-up table with external conditions, and state and output 
of all wind turbines in the wind farm. 
 The model is computationally fast and cheap because it is gridless and because it is based 
on momentum theory. 
 
The quasi-steady wind farm model can be operated in two modes: forward or inverse (figure 2). 
 In forward mode, external conditions are input variables whereas state and output of all 
wind turbines are output variables. A typical application of the forward mode is prediction of 



power production of a wind farm for a given wind speed, wind direction and turbulence intensity. 
Another application of the forward mode is validating and tuning the wind turbine wake sub-
model. 
 In inverse mode, on the other hand, power is input variable whereas all other quantities are 
output variables. A typical application of the inverse mode is the calculation of the distribution of 
power references over the turbines in a wind farm if a given power demand is not to be 
exceeded. The inverse mode is demonstrated in section 4 of this paper. 
 
 
4 Demonstration of wind farm control approaches 
 
In this section four of the wind farm control approaches presented in the sections 2 and 3 are 
demonstrated for a common wind farm comprising a row of 10 NREL 5 MW wind turbines 
separated 5 rotor diameters [13]. The wind flow is parallel to the row of turbines and turbulence 
intensity is 10%.Two ambient wind speed cases are addressed: 8 m/s (halfway cut-in and 
nominal wind speed) and 11 m/s (just below nominal wind speed). Independently, two control 
cases are considered: uncontrolled and controlled. The controlled cases differ in control 
objective: either not to exceed a given power production (quasi-steady flow modelling 
approach), or to track an externally issued power production (the other approaches). 
 
The power references of the individual wind turbines in the wind farm are shown in the figures 3 
and 4. Note that power reference for a wind turbine is not the same as power produced by that 
wind turbine as the actual production is left to the decision of the wind turbine controller. 
 
The left-hand side of figure 3 shows the power references of the individual turbines as functions 
of position in the row in the case of an uncontrolled wind farm operating at the lower than 
nominal wind speed of 8 m/s. There is a clear loss of production, with a maximum loss for the 
second turbine in the row. Total available power, equal to sum of individual power references, is 
12.7% of wind farm nominal power. 
 The right-hand side of figure 3 presents the same information, but for a controlled wind farm 
with a total power demand of 33.0% of the wind farm nominal power. The controller with the 
objective not to exceed the power demand is able to provide the wind farm with individual power 
references that add up to 13.2% of wind farm nominal power while at the same time reducing 
power loss of the second turbine. The other controllers, apart from one, provide individual power 
references that almost track total power demand. 
 
The same kind of information is displayed in figure 4 for the wind farm operating at the higher 
than nominal wind speed of 11 m/s. 
 If not controlled, individual power references add up to 34.9% of wind farm nominal power. 
Loss of production evidently is enormous: 60% of nominal power at second turbine, and another 
20% at next turbines up to the fifth. 
 For this wind speed total power demand of 62.0% of wind farm nominal power is 
considered. The controller with the objective not to exceed the power demand provides the wind 
farm with individual power references that add up to 37.0% of wind farm nominal power and 
essentially redistributes power references over the first three turbines. The other controllers 
almost track total power demand. 
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Figure 3 Wind turbine power reference Pref normalized with wind turbine nominal power Pnom as 
a function of normalized position x/D in a row of wind turbines operating in a lower than nominal 
wind speed which is directed parallel to the row; uncontrolled wind farm (left) and controlled 
wind farm (right) 
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Figure 4 As figure 3 but for a higher than nominal wind speed 
 
 
5 Conclusion 
 
An overview of several wind farm control approaches, all recognizing that wind turbines in a 
wind farm are coupled through their wakes, has been presented, and four of these have been 
demonstrated for a common wind farm. Two wind farm control objectives were considered (to 
track and not to exceed a given power demand) and compared to the uncontrolled situation.  
 For an ambient wind speed lower than the nominal wind speed two approaches provide 
power references for the individual turbines that track total power demand. For ambient wind 
speed higher than nominal this is achieved by three approaches. The fourth approach, which 
has control objective not to exceed rather than to track given power demand, redistributes 
power references over the more upstream wind turbines. 
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Forward
({ {WS, BPA, RS}iklm, {Power, Loads}iklm) = f( {WSk, WDl, TIm} )

state                             output                       external conditions

Inverse
({WSk, WDl, TIm}, {WS, BPA, RS}iklm, {Loads}iklm) = g( {Power}iklm )
external conditions            state                       loads               power reference

WS = Ambient wind speed

WD = Ambient wind direction

TI = Turbulence intensity

BPA = Blade pitch angle

RS = Rotor speed
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