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Abstract

For the numerical prediction of the aerodynamic
forces on wind turbine blades, a viscous-inviscid
interaction method is applied. From a discussion
on the interaction methods, focussing on their abil-
ity to simulate separated flows, it follows that the
quasi-simultaneous interaction method is the most
suitable. The method employed here uses only
the local influence of the external flow, resulting
in an algebraic expression for the interaction-law
equation. The method is applied to a model prob-
lem for a three-dimensional steady, incompress-
ible, turbulent flow over a flat plate. For attached
flow the quasi-simultaneous method converges to
the same solution as a flow solver using a direct
interaction method.

Keywords: viscous-inviscid interaction, boundary
layer, three-dimensional flow, quasi-simultaneous
interaction, wind turbine aerodynamics

1 Introduction

The increase in the size of wind turbines and their
blades creates a need for more accurate prediction
methods of the aerodynamic forces. Larger blades
are more flexible, contain more material and there-
fore a higher level of accuracy in the applied design
methods is desired. The goal of the ROTORFLOW

project of ECN Wind Energy is to create a wind tur-
bine rotor aerodynamics simulation code that re-
quires little user expertise and computational ef-
fort, but can compute in detail the unsteady aero-
dynamic characteristics of rotor blades. The simu-
lation of separated flows and the coupling of the
code with structural dynamics programs will be
feasible.

The rotor aerodynamics simulation code under
development is a combination of a panel method

flow solver for the three-dimensional, unsteady, in-
compressible, inviscid external flow (outer region)
and an integral boundary-layer solver for the three-
dimensional unsteady viscous flow near the blade
surface (inner region), see Figure 1. The strong
interaction between these two flow regions in sep-
arated flows will be accounted for by a so-called
viscous-inviscid interaction method.

q∞

inviscid region

viscous region

Figure 1: Domain decomposition into viscous and invis-
cid regions.

The interaction method ensures the exchange
between the boundary-layer variables of the vis-
cous flow and the inviscid flow variables. This
method has extensively been applied in aerofoil
applications (e.g. [11]), but is hardly used in the
design of wind turbine blades.

This paper will focus on the application of a
quasi-simultaneous interaction method for three-
dimensional aerodynamic flow. First, back-
ground information about viscous-inviscid interac-
tion methods is provided, followed by a descrip-
tion of the applied quasi-simultaneous method. To
show that this method converges to the same so-
lution as a direct method, the result of a simulation
of a flow over a flat plate is discussed.

2 Viscous-Inviscid Interaction
Methods

Since the development of the first viscous-inviscid
interaction methods, several types of interaction
methods have been developed. Four basic types
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of interaction methods will be discussed here from
which other variants can be derived.

The philosophy of the interaction method is that
it exchanges the velocity vector and the boundary-
layer displacement thickness - modeled via a tran-
spiration velocity - between the inviscid and vis-
cous region until a smooth solution between the
two regions is obtained.

Mathematically, the phenomenon of interaction
can be described as follows:

{

~ue = Eδ∗

~ue = Bδ∗
, (1)

with ~ue the velocity vector at the edge of the
boundary layer; δ∗ the boundary-layer displace-
ment thickness; E and B the set of external
flow and integral boundary-layer equations respec-
tively.

The most straightforward method is the direct
method. In this method, see Figure 2, the viscous
and inviscid regions are calculated subsequently:

{

~u
(n)
e = Eδ∗(n−1)

δ∗(n) = B−1~u
(n)
e

, (2)

where n is the iteration number. This method
works well for attached flows where the effect of
the boundary layer on the external flow is small.
However, at the point of separation a singularity
occurs and B−1 cannot be determined. This is the
well-known Goldstein singularity, already analyzed
in 1948 [5].

E

B

δ∗ ~ue

Figure 2: Direct interaction scheme.

Solving the boundary-layer equations with a
given displacement thickness instead of a given
velocity is referred to as an inverse method (Fig-
ure 3):

{

δ∗(n) = E−1~u
(n−1)
e

~u
(n)
e = Bδ∗(n) . (3)

Catherall and Mangler [1] first proposed this
method and this method is able to calculate sep-
arated flows. The convergence of the interaction
scheme is slow, however.

E

B

δ∗~ue

Figure 3: Inverse interaction scheme.

Both methods discussed before assume a hi-
erarchy between the flow regimes. An alternative -
to avoid the hierarchy - is to solve the viscous and
inviscid flow simultaneously (Figure 4):

{

~u
(n)
e − Eδ∗(n) = 0

~u
(n)
e − Bδ∗(n) = 0

. (4)

This is a robust method and calculates separated
flow well. The XFOIL code of Drela is based on
this idea [3]. However, a drawback of this method
is that the equations for both flows are modeled in
one system of equations, reducing the flexibility in
flow modeling and increasing software complexity.

E + B

δ∗, ~ue

Figure 4: Simultaneous interaction scheme.

Using the advantages of the direct and simulta-
neous method and circumventing their drawbacks,
is what the quasi-simultaneous method, devel-
oped by Veldman [12], is aiming for. This method
solves the viscous flow region together with an ap-
proximation of the external flow and subsequently
solves the inviscid flow, see Figure 5. The system
of equations becomes:

{

~u
(n)
e − Iδ∗(n) = Eδ∗(n−1)

− Iδ∗(n−1)

~u
(n)
e = Bδ∗(n)

⇒ (I − B)δ∗(n) = (I − E)δ∗(n−1), (5)

where I is the approximation of the external flow
which is called interaction law. The interaction law
is formulated such that it has no influence on the
converged solution: when δ∗(n) = δ∗(n−1), I can-
cels from equation (5). In the past, several inter-
action laws have been applied, see for example
Edwards [4] and Van der Wees and Van Muijden
[11]. The interaction law applied in ROTORFLOW

is based on the quasi-simultaneous interaction law
formulation of Veldman.
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replacements E

B + I

δ∗ ~ue

Figure 5: Quasi-simultaneous interaction scheme.

3 Interaction law

The interaction law I is a simplification of the exter-
nal flow such that only the essentials of the inviscid
flow are taken into account. The resulting inter-
action method closely resembles a direct method,
with the advantage that separated flow can be
calculated. The formulation of the interaction-law
equation is based on thin-airfoil theory of which the
three-dimensional derivation will be discussed in
Section 4.

3.1 Interaction-law equation

For the formulation of the interaction-law equation,
only the local influence of the external flow on the
boundary layer is taken into account. This results
in a very simple algebraic expression for the inter-
action law:

I : ue + cq∞δ∗ = RHS, (6)

with c the interaction-law coefficient and q∞ the ab-
solute value of the upstream flow velocity. The
right-hand side contains information of the exter-
nal flow. For two-dimensional applications the
interaction-law equation (6) is, [13]:

I2D : ue −
4q∞δ∗

πh
= RHS, (7)

where h is the mesh width from the discretization
of the external flow model.

For three-dimensional applications we pro-
pose:

{

I3D,ue
: ue − cxqeδx = RHSx

I3D,ve
: ve − cyqeδy = RHSy

(8)

Also, the q∞ from (6) has been replaced by the
local qe, since combinations like (qeδx) and (qeδy)
appear naturally in the formulation of the inviscid
flow; see e.g. the source strength (20). The re-
lation between the integral thicknesses δx, δy and
the displacement thickness δ∗ is given by Smith
[10]. On an equidistant grid with h = ∆x = ∆y,

the coefficients cx and cy become:
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. (9)

3.2 Comparison with direct method

For a two-dimensional boundary-layer flow it will
be shown that for the direct method the set of inte-
gral boundary-layer equations B becomes singu-
lar at separation. It can also be shown that, for
a suitably chosen constant c in equation (6), this
singularity is removed by the additional interaction-
law equation introduced in the quasi-simultaneous
method. From Figure 6 it can be concluded that
for the boundary-layer flow it is not possible to find
a δ∗ for every given ue. The minimum in the ue -
δ∗ curve corresponds with the point of separation
at which also the H1-H relation shows a minimum;
the Goldstein singularity.

Figure 6: From [13]: Boundary layer and inviscid flow
combined in terms of ue and δ∗. Not for ev-
ery slope of the inviscid flow relation a solu-
tion can be found.

For a two-dimensional flow, the boundary-layer
can be described with the Von Kármán and En-
trainment equations ([6], [9]). In the direct method,
ue is known and the system of equations can be
written as: F̂ ∂U

∂x = RHSF, with U = (δ∗, H)T the
vector of unknowns. The matrix F̂ is:

F̂ =

[

1 −
δ∗

H
H1

H
δ∗

H

(

dH1

dH −
H1

H

)

]

(10)

and the right-hand side is:

RHSF =

[

1
2cf −

δ∗

ue
(2/H + 1)due

dx

CE −
H1δ∗

ueH
due

dx

]

. (11)

The right-hand side is assumed to be known. In
the quasi-simultaneous interaction method, ue is

3



treated as an extra unknown with the interaction
law as additional equation to close the system of
equations. The interaction-law equation I2D can
be used to write ue in terms of δ∗ and subsequently
be substituted into equation (10). The system of
equations with the quasi-simultaneous interaction
can be written as F̂ I ∂U

∂x = RHSI with F̂ I :

F̂ I =

[

1 + C(2/H + 1) −
δ∗

H
H1

H (1 + C) δ∗

H

(

dH1

dH −
H1

H

)

]

, (12)

where C = −
cδ∗

ue
> 0 and the right-hand side re-

duces to:

RHSI =

[

1
2cf

CE

]

. (13)

It is easily verified that the system of equations (10)
becomes singular when dH1

dH = 0 and the system
(12) becomes singular when:

dH1

dH
=

H1

H

C(1 + H)

1 + C(2 + H)
. (14)

The right-hand side of equation (14) is always pos-
itive for positive values of C. Figure 6 shows the
relation between ue and δ∗ for inviscid flow as
well. To obtain a robust interaction law the value
of c should be chosen such that the slope of the
interaction-law equation will always ensure an in-
tersection with the viscous curve [13].

4 Model problem

A simulation of a boundary-layer flow over a flat
plate is used to show that the quasi-simultaneous
method (equation (5)) converges to the same re-
sult as the direct method (equation (2)). The
boundary-layer flow is assumed to be steady, in-
compressible and turbulent. The external flow is
a steady potential flow. For both flow regimes the
models used by Coenen [2] are applied.

4.1 Boundary-layer flow

In the boundary-layer flow model three integral
boundary-layer equations are employed together
with suitable closure relations. The two integral
momentum equations are in an orthogonal Carte-
sian coordinate system:

∂

∂x
(θxxq2

e) +
∂

∂y
(θxyq2

e) =

− qeδx
∂ue

∂x
− qeδy

∂ue

∂y
+ τwx

(15)

and

∂

∂x
(θyxq2

e) +
∂

∂y
(θyyq2

e) =

− qeδx
∂ve

∂x
− qeδy

∂ve

∂y
+ τwy

. (16)

The Entrainment equation reads:

∂

∂x
(ueδ − qeδx) +

∂

∂y
(veδ − qeδy) = qeCE , (17)

with δ the boundary-layer thickness and θxx, θxy,
θyx and θyy the x- and y-momentum thicknesses.

In the current model in the equation for θsn,
equation (B.13) from [2], δ∗s is replaced by δ∗n ac-
cording to the cited reference there.

The integral boundary-layer equations have to
be extended with some closure relations, as in
the two-dimensional case. In particular, following
Houwink [8], the H1 − H relation is chosen such
that it also can describe separated flow. In the
final model for complete wind turbine blades, the
closure relations can also contain effects of the ro-
tating flow.

4.2 Inviscid flow

The external flow is assumed to be inviscid and
irrotational. Therefore, it can be modeled by a po-
tential flow in which the velocity potential can be
described by equation (3.19) [2]:

Φ = φ + Φ∞, (18)

with

φ =
−1

4π

∫∫

σ(x − ξ)dξdη

((x − ξ)2 + (y − η)2 + Z2
p)1/2

(19)

and the source strength σ is defined by equation
(3.43) [2]:

σ = 2

(

∂

∂x
(U∞Zp) +

∂

∂y
(V∞Zp)

)

+ 2

(

∂

∂x
(qeδx) +

∂

∂y
(qeδy)

)

. (20)

This model applies only for flows over dented
plates with Zp the height of the plate. Furthermore,
in equation (20) terms like ∂qeδx

∂x can be recognized
which are related to the transpiration velocity.

4.3 Discretization of the external flow

For the calculation of the model problem, the ge-
ometry is divided into equally sized panels of size
∆x by ∆y on an orthogonal Cartesian grid. The
velocity is obtained in the corner points of the pan-
els. The derivatives of (qeδx) and (qeδy) from σ
are discretized centrally. For the evaluation of the

4



surface integral, expression (4.4.19) of Hess and
Smith [7] is used. The external velocity at point
(i, j) can be written as:

ueij
=

Nx+1
∑

k=1

Ny+1
∑

l=1

[Au
ijklmxkl

+ Bu
ijklmykl

] + u0eij

(21)

veij
=

Nx+1
∑

k=1

Ny+1
∑

l=1

[Av
ijklmxkl

+ Bv
ijklmykl

] + v0eij

(22)
with mx = qeδx, my = qeδy; u0eij

, v0eij
follow from

the terms in the first brackets of equation (20). The
matrices Au, Bu, Av and Bv are called influence
matrices.

For the coefficients cx and cy in the interaction-
law equations (8), the local effect of the evaluation
point is used: (k, l) = (i, j). The elements of the
influence matrices at that point are:

cx = Au
ijij =

∆y

2π∆x2
ln

∣

∣

∣

∣

∣

(
√

∆x2 + ∆y2 + ∆x)2

(
√

∆x2 + ∆y2 − ∆x)2

∣

∣

∣

∣

∣

;

(23)

Bu
ijij = 0; Av

ijij = 0; (24)

cy = Bv
ijij =

∆x

2π∆y2
ln

∣

∣

∣

∣

∣

(
√

∆x2 + ∆y2 + ∆y)2

(
√

∆x2 + ∆y2 − ∆y)2

∣

∣

∣

∣

∣

.

(25)

The values of the influence matrices at (k, l) =
(i, j) are used as the interaction coefficients for the
interaction law in the quasi-simultaneous interac-
tion method applied (equation (8)).

4.4 Quasi-simultaneous implementa-
tion

The system of equations for the quasi-
simultaneous interaction method, equation (5), is
now fully modeled. Table 1 gives the correspond-
ing equations.

Table 1: Equations implemented for the quasi-
simultaneous interaction method, eq. (5).
E: equations (21) and (22)
B: equations (15), (16) and (17)
I: equation (8)

The three integral boundary-layer equations B
and the interaction-law equations I are written in
one system of equations: (B + I)U = 0. The vec-
tor of unknowns U contains:

U = (ue, ve, H, θss, β)T . (26)

The boundary-layer equations are discretized with
a finite difference upwind scheme. The resulting
system of equations is solved via Newton iteration.
The following initial solution is used:

ue = 1.0;

ve = 0.0;

H = 1.35;

θss = 0.005/(Re0.2);

β = 0.0,

where Re = 11.5 × 106 and β is the angle be-
tween the external streamline and the limiting wall
streamline.

5 Results

The quasi-simultaneous interaction method has
been implemented to perform a simulation of flow
over a flat plate with an equidistant grid both in x-
and y-directions with Nx = Ny = 17; ∆x = ∆y =
1/16.

The total calculation time strongly depends on
the determination of the values of the influence
matrices whose size scales with (Nx × Ny)2. The
influence matrices are determined before the in-
teraction cycle - Figure 5 - starts. For converged
solutions less than ten sweeps through the inter-
action cycle are needed.

The applied external flow is two-dimensional
and the boundary-layer is assumed to show two-
dimensional behavior as well. In Figure 7 and 8
the shape factor and displacement thickness of a
2D and 3D simulation are shown. From the figure
it follows that the results match well.

 1.3

 1.31

 1.32

 1.33

 1.34

 1.35

 1.36

 1.37

 0  0.2  0.4  0.6  0.8  1

x

H

3D
2D

Figure 7: Comparison between a 2D and the 3D model
- shape factor, ∆x = 1

16
, Re = 11.5 × 106.
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 0  0.2  0.4  0.6  0.8  1

x

δ∗

3D
2D

Figure 8: Comparison between a 2D and the 3D model
- displacement thickness, ∆x = 1

16
, Re =

11.5 × 106.

For simulations with several mesh sizes on the
three-dimensional grid, Table 2 shows the values
of the streamwise velocity, δx and shape factor.
The table shows that the differences for the result-
ing values of the boundary-layer variables are very
small.

Table 2: Boundary-layer variables for several grid sizes
at x = 1.0, y = 0.5 for flow over a flat plate with
Re = 11.5 × 106, h = ∆x = ∆y.

h ue δx H
1/8 1.002 1.939 × 10−3 1.307
1/16 1.002 1.950 × 10−3 1.307
1/32 1.002 1.956 × 10−3 1.307
1/64 1.002 1.956 × 10−3 1.307

The interaction law of the quasi-simultaneous
method is applied in defect formulation and has
no influence on the converged solution, see also
equation (5). Figures 9 and 10 show the shape fac-
tor and streamwise momentum thickness for cal-
culations with the quasi-simultaneous and direct
method, respectively. It can be seen that the re-
sults for both methods coincide. The differences
between the results are of O

(

10−4
)

. Figure 11
shows the vector plot of the two simulations. In
this figure it can also be observed that both meth-
ods converge to the same solution as the vectors
coincide.
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Figure 9: Shape factor of a simulation with the direct and quasi-simultaneous method, ∆x = ∆y = 1

16
, Re =

11.5 × 106.
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Figure 10: Streamwise momentum thickness of a simulation with the direct and quasi-simultaneous method, ∆x =
∆y = 1

16
, Re = 11.5 × 106.
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Figure 11: Vector plot of velocity of a simulation with the direct and quasi-simultaneous method, ∆x = ∆y = 1

16
,

Re = 11.5 × 106. Note that the vectors of both simulations coincide at every point calculated.

6 Conclusion

For the interaction between the inviscid and
viscous flow regimes in ROTORFLOW, a
three-dimensional formulation for the quasi-
simultaneous interaction method has been de-
rived. The applied interaction-law equation is
based on the local influence of the inviscid flow on
the boundary-layer. The method has been applied
on a steady, incompressible, turbulent flow over a

flat plate. It was shown that for a two-dimensional
flow over a three-dimensional flat plate, the result
matches with a fully two-dimensional calculation.
The mesh size hardly influences the final result for
the problem considered. Furthermore, the result
also coincides with a result of a simulation using a
direct method.

Future tests for the quasi-simultaneous inter-
action law as derived here include the simulation
of a boundary-layer flow over a dented plate in-
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cluding separation and substitution of the algebraic
interaction-law equation into the partial differential
equations of the integral boundary-layer equations
making the set of equations suitable for application
in other flow solvers.
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