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Abstract
ECN has developed a demo version of the Flight Leader model, which is based on a concept with 
which the accumulated mechanical loading of all turbines in an offshore wind farm can be estimated at 
acceptable costs. This information can be used to optimise and lower the cost of Operation & Mainte-
nance (O&M), for example by prioritising inspections and replacements. In this paper the background 
and general concept of the Flight Leader model are presented. A full Flight Leader analysis has been 
performed using data from the Dutch offshore wind farm OWEZ. In this paper the approach and re-
sults of the analyses are discussed. 
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1. Introduction
Operation & Maintenance (O&M) costs for 
offshore wind farms account for up to 30% of 
the kWh price [1]. Lowering these costs is an 
important prerequisite for the economical ex-
ploitation of large offshore wind farms. The 
adequate planning of condition based mainte-
nance is one aspect that could decrease the 
O&M costs; instead of having similar mainte-
nance and inspection schemes for all turbines, 
the O&M requirements for each turbine can be 
made more dependent on its accumulated 
mechanical loading [2].

The most obvious way to get insight in the 
loading of all turbines in an (offshore) wind 
farm is to instrument all turbines with load 
measurements on the critical components. 
However, in practice after a wind farm is built, 
the actual loads on components are measured 
in only very few occasions. This is mainly 
caused by the fact that an adequate meas-
urement campaign is labour intensive, costly
and time consuming, especially if all turbines 
need to be measured. 

Figure 1: General structure of the flight leader computer model.
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ECN is developing the Flight Leader concept, 
which is a methodology where only a small 
number of turbines at strategic locations in the 
offshore wind farm are equipped with me-
chanical load measurements. Using the meas-
urements at these so-called ‘Flight Leader’ 
turbines relations are established between 
standard (SCADA) signals and load indicators. 
Combining these relations with the standard 
signals of all other turbines in the wind farm, 
offers the possibility to keep track of the accu-
mulated mechanical loading of all turbines in 
the offshore wind farm at low costs. This is 
illustrated in Figure 1.

ECN has developed a demo version of a soft-
ware model [3, 4], which includes all aspects of 
the Flight Leader concept. The software is 
intended to be used by operators of offshore 
wind farms and is used to process the SCADA 
data and mechanical load measurements from 
the offshore wind farm. The main output of the 
model is a comparison of the accumulated 
mechanical loading of all turbines in the off-
shore wind farm. This information can subse-
quently be used to optimise O&M strategies, 
for example by prioritising the inspection or 
replacement of certain components on the 
heavier loaded turbines. The structure and 
functionality of the software model is explained 
in more detail in chapter 2.

Key to the application of the Flight Leader con-
cept are the relations between standard 
(SCADA) signals and load indicators. The 
more accurate these relations, the more reli-
able are the calculations of accumulated load-
ing. Previously [3, 4], it has been proven that 
artificial neural networks can be applied for 
accurately estimating load indicators using 
only 10-minute statistics of standard SCADA 
parameters. First a short introduction on neural 
networks is given in chapter 3. In chapter 4 the
approach and results for the evaluation of the 
Flight Leader are presented. Finally, in chapter 
4 the results of the Flight Leader software, 
implemented at an offshore wind farm, are 
presented.

2. The flight leader model
In this chapter the structure of the flight leader 
model will be treated in more detail. The gen-
eral structure for the flight leader computer 
model is shown in the flowchart in Figure 2.

In the following subsections the different parts 
of the flight leader model will be discussed in 
more detail.

Figure 2: General structure of the flight leader computer model.

2.1 Data input
The input for the flight leader model is the data 
that are collected from the offshore wind farm. 
Two types of data can be distinguished; (1) 
SCADA data, which are being collected from 
all turbines and (2) mechanical load measure-
ments, which are being collected only from the 
flight leader turbines. Both data should be col-
lected as 10-minute statistics.

2.2 Data categorisation
Unfortunately a wind turbine does not always 
operate in normal power production mode.

Furthermore, when located in an (offshore) 
wind farm, wind turbines do not always experi-
ence free-stream wind conditions. Both men-
tioned conditions are expected to have an 
effect on the mechanical loading.

In order to take this into account the first step 
of the flight leader model is to categorise each 
10-minute timestamp in the dataset in one of 
the possible combinations of the three pre-
defined turbine states j and wake conditions k.1

                                                  
1 It is assumed that wake conditions are only relevant in 
case a wind turbine operates in normal power production.



   5

The possible combinations are indicated in 
Table 1.

Table 1: Possible combinations of turbine states & transi-
tional modes and wake conditions.

ID Turbine state or 
transitional mode j Wake condition k

1.1 Free-stream
1.2 Partial wake
1.3

Normal power 
production Full wake

2.1 Parked/Idling
3.1 Transient events Not applicable

2.3 Empirical database
After all available data have been categorised 
the measurements from the Flight Leader tur-
bines can be used to establish relations be-
tween (standard) SCADA parameters and load 
indicators, which are representative for the 
damage, aging or degradation of a certain 
component.

As mentioned in the previous section, these 
relations are expected to differ for the identified
turbine states & transitional modes and wake 
conditions. Therefore the relations between 
SCADA parameters and load indicators have
to be determined for each of the possible com-
binations shown in Table 1.

The software model offers the possibility to 
characterise the relations using more tradi-
tional methods such as interpolation or multi-
variate regression but also using artificial neu-
ral network techniques.

2.4 Simulation database
In the period directly after the commissioning 
of the offshore wind farm little measured data 
are available. Therefore it might be beneficial 
to incorporate the results of aero-elastic simu-
lations into the flight leader model. This is par-
ticularly interesting for those situations with a 
low probability of occurrence, such as emer-
gency shutdowns or extremely high wind 
speeds.

2.5 Estimating load indicators
Next step is estimating the load indicators at all 
turbines in the offshore wind farm. This is 
achieved by combining the SCADA data, col-
lected at all turbines, with the relations be-
tween SCADA parameters and load indicators
as stored in the empirical database. Optionally, 
for this process also results from aero-elastic 
simulations can be incorporated.

The situation might occur that for a certain
turbine for a certain amount of time no SCADA 
data are available. For these periods the load 
indicators cannot be estimated neither with the 

empirical nor the simulation database. In order 
to ensure a fair comparison of the total accu-
mulated loading the software also contains a 
procedure for handling missing data.

2.6 Output
Finally, the last part of the model is the proc-
ess of generating and displaying the desired 
output of the flight leader model. The main 
output consists of a comparison of the accu-
mulated mechanical loading of all turbines in 
the offshore wind farm. This output needs to 
be shown for the several load indicators (e.g. 
blade root bending, tower bottom bending or 
main shaft torque).

Besides the main output the software model 
can calculate and display various breakdowns 
of the accumulated loading. For instance the 
contribution of each turbine state or transitional 
mode or wake condition to the total accumu-
lated loading can be displayed. Furthermore 
the load accumulation per time period can be 
studied. These outputs can be used to get 
more insight in the performance of the offshore 
wind farm and what operating conditions have 
the largest impact on the loading of the tur-
bines in the offshore wind farm.

3. Artificial neural networks
Besides the more ‘classical’ techniques of 
interpolation and regression so-called ‘artificial 
neural networks’ can also be applied to model 
the relationship between two or more variables 
[5, 6]

3.1 General description
A neural network in fact represents a mathe-
matical model, where a number of (transfer) 
functions are connected in parallel and, possi-
bly, also in series. Based on the weighted sum 
of multiple input signals each transfer function 
calculates a value, which subsequently serves 
as input for the next transfer function. The 
transfer function, including the weighted sum-
mation of multiple input signals, is labelled as 
neuron. A neural network with a sufficient 
number of neurons is, in theory, able to ap-
proximate every possible function.

A schematic representation of a neuron and a 
neural network (consisting of two ‘hidden’ lay-
ers of neurons) is shown in Figure 3.



   6

Transfer functionΣ

Factor

Factor

Factor

Neuron

Neuron

Neuron

Neuron

Neuron

Input Output

Neuron

Neural network

Hidden layers

Figure 3: Schematic representation of a neuron and a 
neural network.

3.2 Application
For the analyses that will be described in chap-
ter 4 the MATLAB® Neural Network ToolboxTM

has been used. The neural networks are 
trained using the Levenberg-Marquardt back-
progagation algorithm. In order to prevent 
overfitting the early stopping technique is used.

4. Evaluation of the Flight 
Leader at OWEZ

In this chapter the approach and results of the 
evaluation of the Flight Leader software at the
Offshore Wind farm Egmond aan Zee (OWEZ)
are presented. In the first two subsections 
some information of the wind farm and the 
dataset is given. In the following subsections 
the results from all steps in the evaluation 
process are discussed.

4.1 The OWEZ wind farm
OWEZ is the first Dutch offshore wind farm, 
located 10-18 km from the village Egmond aan 
Zee. The farm consists of 36 Vestas V90 tur-
bines, which are pitch-controlled variable-
speed machines with a rated power output of 3 
MW.

Two turbines in the farm are equipped with 
mechanical load measurements on blades and 
tower and will therefore act as Flight Leader 
turbines.

4.2 Dataset
The evaluation has been performed using 9
months of measured data from all 36 turbines. 
Available SCADA signals include nacelle wind 
speed, rotor rotational speed, pitch angle, elec-

trical power output and nacelle yaw direction. 
Mechanical load measurements are performed 
on blade (flapwise and edgewise) and tower 
(north-south and east-west). Additionally, data 
from the meteorological mast and nearby wave 
buoy are available.

4.3 Data categorisation
As discussed in chapter 2 the first step of the 
analysis is to categorise the data for each tur-
bine i and 10-minute timestamp t in one of the 
pre-defined load cases (see Table 1). 

4.4 Selection of load indicator and 
SCADA parameters

The evaluation of the Flight Leader software 
has been performed for two load indicators2;
the 1 Hz damage equivalent load range ∆FEQ
of:
 Blade root flapwise bending; 
 Tower bottom for-aft bending;

The damage equivalent load range ∆FEQ is the 
load range that for some arbitrarily chosen 
number of cycles N would, in theory, produce 
the same damage as all actual load ranges 
(which follow from rain flow counting) com-
bined:

m i

m
ii

EQ N

Fn
F

 
 (1)

where m is the Wöhler coefficient, ni the actual 
number of cycles and ∆Fi the actual load range 
for each occurring case i.

A trial-and-error approach has been adopted in 
order to assess which signals should be in-
and excluded in the artificial network. It has 
also been chosen to, at first, not to include any 
signals from the meteorological mast or wave 
buoy. The selected SCADA parameters are 
listed in Table 2 for each load case (for both 
load indicators the same set of SCADA pa-
rameters has been used).

Table 2: SCADA signals used to estimate the load indica-
tor for tower for-aft bending for each load case.
Load 
case

Wind 
speed

Rotor 
speed

Pitch 
angle Power

ID avg std avg std avg std avg std
1.1 o o o o o o
1.2 o o o o o o
1.3 o o o o o o
2.1 o o o
3.1 o o o o o o o o

                                                  
2 For the sake of compactness only the results for tower 
for-aft bending are presented in this paper.



   7

4.5 Relation SCADA parameters and 
load indicator

After identifying the load indicators and rele-
vant SCADA parameters the next step is to 
establish the relation between the selected 
SCADA signals and the load indicator. A sepa-
rate relation has to be devised for each of the 
five identified load cases. The relations are 
characterised by an artificial neural network, 
which is trained using data from both Flight 
Leader turbines.

Half of the total amount of data is used for 
training the network. Another 25% is used to 
validate the network’s performance for every 
iteration step and to halt training at the point 
where generalisation starts decreasing. The 
final 25% is used as an independent measure 
(has no influence on the network’s training 
process) of the network’s performance when 
fed with new data.

The performance of the trained artificial neural 
network for the load case power production & 
free-stream conditions is shown in Figure 4.

Figure 4: Performance of the neural network trained for 
estimating the tower bottom for-aft bending load indicator 
for a turbine in power production under free-stream condi-
tions..

The results presented in the figure indicate that 
a good relation exists between the selected 
SCADA parameters (see Table 2) and the load 
indicator for the tower bottom for-aft bending 
moment (see equation 1). This is confirmed by 
the value of the coefficient of determination (R2

= 0.95). When studying the green data points, 
which represent the ‘test’ dataset (which has 
had no influence on the network’s training), it 
can be seen that here also a good perform-
ance is achieved. This is an important indicator 

for the generalisability of the neural network 
(its ability to make accurate predictions when 
fed with new data). Therefore it can be ex-
pected that the trained neural network will also 
make accurate predictions for the other tur-
bines in the same wind farm for this load indi-
cator.

The results (number of data points and coeffi-
cient of determination) for all five load cases 
are summarised in Table 3.

Table 3: Number of data points and coefficient of determi-
nation for the established relations between SCADA sig-
nals and the load indicator for tower for-aft bending.3

Load case Data points R2

1.1 16174 0.9507
1.2 3266 0.9439
1.3 1669 0.9593
2.1 12987 0.6812
3.1 1193 0.9530

The table indicates that for all load cases but 
parked/idling a good accuracy (of around R2 = 
0.95) is achieved. This might be unexpected, 
since no wave-describing parameters are in-
cluded as independent variables in the artificial 
neural network (see Table 2). However, wave 
height and direction are, in general, strongly 
correlated with wind speed and direction. As a 
result the fluctuations in the tower bottom for-
aft bending for an offshore turbine can be ac-
curately estimated without information on the 
wave conditions. 

The main reason why for parked/idling more 
scatter is observed is the fact that no wave-
describing SCADA signals are included as 
independent variables in the relation. When 
the turbine is not in operation it also generates 
no thrust force, which means that the fluctua-
tions in the tower bottom for-aft bending are 
solely caused by wave-induced loading. In 
case the 10-minute significant wave height, 
direction and period are included as independ-
ent parameters a significantly improved accu-
racy is achieved (R2 ≈ 0.80-0.85). However, 
since the data from the wave buoy is missing 
for large chunks of time, only about 3000 data 
points are available. Including these parame-
ters in the relation also has the consequence 
that the Flight Leader software cannot make 
any predictions of the value of the load indica-
tor for the periods where no wave data are 
available. This would lead to a significant error 
when estimating the total load accumulation 
and therefore it is decided to establish the 

                                                  
3 Note that the shown numbers for data points and coeffi-
cient of determination represent the ‘training’ dataset. The 
‘training’ dataset represents 50% of the total amount of 
data available.
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relations without including wave-describing 
parameters.

4.6 Load indicator estimation
In the previous section it has been described 
that for each of the five load cases a relation 
between the selected SCADA signals and load 
indicator has been determined and stored in 
the empirical database of the Flight Leader 
software. Next step is to combine these rela-
tions with the SCADA collected from all 36 
turbines in the offshore wind farm in order to 
make an estimate of the value of the load indi-
cator the tower for-aft bottom bending moment 
for each turbine i and timestamp t.

After the load estimation has been executed 
two post-processing procedures are per-
formed. Firstly, outliers are identified using the 
criteria that the calculated value of a load indi-
cator can never be smaller or larger than a 
certain factor β multiplied with, respectively, 
the minimum and maximum measured value of 
the load indicator. Timestamps t which do not 
meet this criteria have been classified as NaN
in the dataset. 
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The initial analysis has been performed for 
different values of β. However, it was found 
that this did not have a significant influence on 
the number of corrected outliers. The analyses 
described in this report have been performed 
using β = 0 (no extrapolation possible).

Next step is to ensure that for all turbines an 
equal amount of data is available. If for a cer-
tain turbine i at a certain timestamp t the value 
of the load indicator is unknown the value will 
be estimated by taking the average value of 
load indicator c at all turbines in the farm for 
which at timestamp t the value of load indicator 
c is known.


n

i
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F
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where ΔFEQ,c,t is the value for characteristic 
load c at timestamp t, iavailable and iunavailable rep-
resent turbine i for which SCADA data are, 
respectively, available and unavailable, and n
is the number of turbines for which the value of 
load indicator c is known.

The results of the post-processing are shown 
in Figure 5. The top graph indicates the num-
ber of data points classified as outliers, the 
middle graph shows the amount of corrected 
data for each turbine and the bottom graph 
indicates the percentage of missing data after 
all post-processing steps have been per-
formed.

Figure 5: Results of the post-processing steps for estimat-
ing the values of the load indicator for tower for-aft bend-
ing.

It can be seen that for most turbines the num-
ber of outliers is quite low (less than 0.4%) for 
all turbines. However, for some turbines about 
up to 4% of the estimated values of the load 
indicator have been classified as outlier. It can 
also be observed that for these turbines most 
outliers occur for the load case parked/idling. 
As can be seen in Table 3 this is also the load 
case where a less accurate relationship be-
tween the selected SCADA parameters and 
load indicator has been established.

Furthermore, the results of post-processing 
indicate that the amount of corrected data var-
ies greatly over the different turbines. For a 
number of turbines only about 2% of all load 
estimations had to be done using data from 
other turbines. Subsequently also a number of 
turbines has had around 10% of their load 
estimations corrected. Finally, for four turbines 
more than 20% of the estimated values of the 
load indicator have been derived from other 
turbines. This should be considered when 
comparing the load accumulation of these 
turbines with the other turbines as will be de-
scribed further on in this report.

The bottom graph indicates that after both 
post-processing steps have been completed 
the amount of missing data is identical for all 
36 turbines and is equal to less than 0.5% of 
the total amount of data.
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4.7 Output
Now the values of the load indicator for tower 
bottom for-aft bending have been estimated for 
each turbines i for each 10-minutetime period t
it is possible to calculate the total load accu-
mulation for each turbine i. Total load accumu-
lation ∆Stotal,i for each turbine i is calculated as 
follows:

m
N

t

m
tiitotal SS 




1

,, (4)

where ΔSi,t is the value of the load indicator for 
turbine i and 10-minute timestamp t.

Subsequently, the relative difference in load 
accumulation is calculated according: 

ireftotal

ireftotalitotal

S
SS

Difference
,

,,




 (5)

where ∆Stotal,i and ∆Stotal,iref are the total load 
accumulation for turbine i and reference tur-
bine iref respectively.

In Figure 6 a comparison of the load accumu-
lation for the tower bottom for-aft bending mo-
ment is shown. The load accumulation of each 
turbine i is shown relative to the load accumu-
lation of turbine 18.

Figure 6: Load accumulation of all five turbines relative to 
load accumulation of turbine 18.

The figure indicates that most turbines have 
suffered a load accumulation which is roughly 
within about 10% of the load accumulation of 
turbine 18. However, also about 10 turbines 
have accumulated significantly less load. 
When interpreting these results the outcome of 
the load estimation post-processing steps 
should be kept in mind (see Figure 5). It was 
shown that for turbines 1, 11, 13 and 31 more 
than 20% of all estimated values of the load 
indicator have been derived by averaging the 

data from the other turbines. This procedure is 
necessary to ensure that for all turbines an 
identical amount of data is available for calcu-
lating load accumulation but also leads to an 
inaccurate calculation of load accumulation for 
the mentioned turbines.

In order to get more insight in the presented 
results a breakdown of the total load accumu-
lation has been calculated (see Figure 7). The 
graph shows the contribution of three of the 
five load cases to the total load accumulation 
(blue bars). In order to interpret the results in 
both graphs the amount of data is also illus-
trated (red bars). Data from all 36 turbines 
have been used. 

Figure 7: Breakdowns of the load accumulation per load 
case. Note that the results of only three of the five load 
cases are displayed.

The graph shows that on average the 36 tur-
bines operate in power production and under 
free-stream conditions for most of the time. 
However, the total load accumulation for this 
load case is a much smaller part of the total. 
The opposite is found in case the turbine oper-
ates in wake conditions. Especially if the tur-
bines are facing full wake conditions the load 
accumulation is more than two times as large 
compared to the amount of time the turbines 
operate in these conditions. Although, not 
shown in the figure it has been found that 
when the turbines are in parked or idling condi-
tion still a significant amount of load accumula-
tion occurs. For onshore turbines this was not 
the case [6], which indicates that for this load 
case the wave-induced loading is dominant. 
Finally, relatively the largest load accumulation 
occurs during transient events. This load case 
accounts for a very small part of the total data 
but still the load accumulation during this load 
case is similar to the one for power production 
under free-stream conditions for which a stag-
gering 10 times as many data are available. 



   10

4.8 Validation
Last step in the analysis is the validation of the 
accuracy of the Flight Leader predictions. In 
order to do this the predicted and measured 
load accumulation for each load case are cal-
culated for both Flight Leader turbines. The 
prediction errors are subsequently calculated 
using:

meastotal

meastotalpredtotal

S
SS

Error
,

,,






where Etotal,pred and Etotal,pred are the predicted 
and measured total electricity production sub-
sequently.

The resulting prediction errors are shown in
Table 4.

Table 4: Prediction errors of the Flight Leader software for 
the load indicator for tower bottom for-aft bending.
Load case FL turbine 1 FL turbine 2

1.1 -1.25% -0.16%
1.2 -0.77% -1.36%
1.3 -0.88% -1.93%
2.1 -7.88% -6.60%
3.1 -1.65% -0.15%

The results in the table show that the Flight 
Leader predictions of load accumulation are 
very accurate. For the power production and 
transient event load cases the prediction errors 
are smaller than 2%. For the parked/idling load 
case the errors are slightly larger, which can 
be contributed to the fact that for this load case 
the relation between SCADA parameters and 
load indicator showed significantly more scat-
ter compared to the relation for the other load 
cases.

4.9 Conclusions
A full Flight Leader analysis has been per-
formed using data from the OWEZ offshore 
wind farm. The analysis has been performed 
for the tower bottom for-aft bending load. For 
this load the damage equivalent load range is 
used as load indicator. 

A trial-and-error approach has been adopted in 
order to determine what SCADA parameters 
are relevant for estimating the values of the 
load indicator. For each of the five defined load 
cases a separate relation between the se-
lected SCADA signals and the values of the 
load indicator has been determined. For al-
most all load cases an accurate relation is 
established. Only for the parked/idling load 
case the relation is surrounded by more scat-
ter, which is caused by the fact that no wave-

describing parameters are included in the rela-
tion.

After  establishing all required relations the 
values of the load indicators are estimated for 
all 36 turbines in the offshore wind farm. Sub-
sequently, the 10-minute load indicator values 
have been summed in order to calculate total 
load accumulation of each turbine in the farm. 
After comparing the total load accumulation of 
all turbines it has been found that the differ-
ence in total load accumulation is smaller than 
around 10% for most of turbines. A few excep-
tions exist, mainly for the turbines that have 
been in parked of idling state for large periods 
of time. 

It has also been analysed what load cases 
contribute most to total load accumulation. The 
most striking observation is the very high con-
tribution of transient events to the total load 
accumulation. Despite its low frequency of 
occurrence for the load accumulation during 
this load case is about equal to the load accu-
mulation during power production in free-
stream conditions. Furthermore, also load ac-
cumulation during wake operation is relatively 
high. In contradiction to what has been ob-
served onshore, during the parked/idling load 
case still significant load accumulation occurs, 
which can be attributed to wave-induced load-
ing.

Finally, also the output of the Flight Leader 
software has been validated by comparing the 
predicted and measured total load accumula-
tion for both Flight Leader turbines. Very small 
prediction errors were found for all load cases 
but parked/idling. The lower accuracy of the 
Flight Leader software here can be explained 
by the lower accuracy of the relation between 
SCADA parameters and load indicator for this 
load case. 

5. Status and future work
Functional and technical specifications for the 
Flight Leader software model have been com-
pleted. On the basis on these detailed specifi-
cations a demo version of the Flight Leader 
software model has been programmed in 
MATLAB®.

The demo software model has been evaluated 
extensively using data from both ECN’s 
EWTW wind farm and Dutch offshore wind 
farm OWEZ. Based on the findings on the 
performed analyses the software has been 
adjusted where necessary. Furthermore an in-
house review of the software is currently being 
performed.
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Furthermore, results of aero-elastic simulations 
will be incorporated in the Flight Leader soft-
ware with the target of (1) comparing the em-
pirical and simulated relations between 
SCADA parameters and load indicator, and (2) 
to ensure that sufficient data is available for 
load cases for which little empirical data is 
available (e.g. emergency shutdowns).
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