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1 Abstract 
Thermal separation processes like distillation consume a large amount of energy in the process 
industry. Replacing these processes by membrane pervaporation will lead to much lower energy 
consumption. The expected high chemical and thermal stability of inorganic membranes compared 
to polymer membranes has resulted in a growing research activity with the first aim of replacing 
polymer membranes with inorganic ones. The superior separation performance, i.e. selectivity and 
flux, of silica-based membranes in the dehydration of alcohols and solvents at elevated 
temperatures has raised the interest even further. The application depends on a reliable and good 
long-term performance. Unfortunately, information on this topic is still very limited. We have shown 
that silica and methylated silica membranes are not stable at temperatures above 100oC and the 
application window of state-of-the-art Me-SiO2 membranes for use in dehydration processes is 
limited to 95°C [1]. For methanol separation from organic solvents the Me-SiO2 membranes can be 
used at higher temperatures [2]. 
 
Hybrid silica materials are expected to have a much higher hydrothermal stability than (methylated) 
silica. The superior separation performance, i.e. selectivity and flux, of these hybrid membranes in 
the dehydration of alcohols and solvents at elevated temperatures has raised the interest [3]. High 
flux performance is required to decrease the membrane area needed and thereby the price to 
become competitive against the well know distillation technique. It is proven that the required water 
flux of at least 3 kg/m2h, for the dehydration of 5wt.% water in butanol as a representative standard 
application, can be achieved easily. The profitable application of the membranes depends on a 
reliable, stable long-term behaviour and the broad applicability especially at temperatures above 
100°C. We will report on the development of organic/inorganic hybrid silica membranes with 
selectivities and fluxes, that are comparable with the silica based membranes in dehydration by 
pervaporation. Details of test results will be given in different dehydration applications up to 150°C 
including the dehydration of aprotic solvents. Further, results will be given on long term stability 
testing up to 150°C and up to 2 years of continuous operation in the dehydration of organic 
mixtures. The results show that a completely new class of hybrid materials is available that opens 
new markets for dehydration processes by pervaporation. 
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Development of hybrid silica - HybSi®
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Introduction
• 474 PJ/year Energy use in NL (petro)chemical (NL≈2400 PJ/year)
• Separation processes 190 PJ/year
• Low exergetic efficiency, so large energy saving potential

By 2015 potential energy savings in dehydration pervaporation:
• NL: 7 PJ/yr (2% of industrial energy consumption)
• World: 240 PJ/yr
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Introduction

BUT

Pervaporation membrane stability is limited with respect to:
• (Hydro) thermal conditions
• Solvent resistance
• Acids



Pervaporation membrane materials: goals set

Test conditions dehydration of organics by pervaporation:
1. Temperature: 150°C.
2. Mixture 5 wt.% water in n-butanol.
3. Acidity: pH 2-10.
4. Pressures and pressure differences up to 30 bar.

and the membrane process should meet the following industrial demands:
1. Water flux of 5 kg/m2h.
2. Selectivity of at least 360 (feed 5 wt.% water → permeate 95 wt.% water).
3. Run time of 3 years = average maintenance time of a process. 
4. Change of flux and selectivity of less than 10% per year.



Steps in the membrane production
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Membrane coating
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Tubular microporous membranes

4 nm pores

120 nm pores

Pores < 1nm
ZrO2/TiO2
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Materials covered
Previous developments:

• SiO2

• Methylated SiO2

New leads:
• Ceramic supported polymers (J.Membr.Sci., (2008) 319, 126-132)

• TiO2 }
• ZrO2 }
• Hybrid silica (HybSi®), organic bridges

( J.Sol-gel Sci.Technol. (2008) 48, 203-211)



Silica and Me-Silica long term
pervaporation at 95oC
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Feed = 2.5 wt.% water in nBuOHMe-Silica long term
pervaporation up to 165oC Membrane failure within weeks

Water flux and conc. in permeate vs. time
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Pervaporation with titania membrane

Microporous Titania 
95°C -  5% H2O in n-BuOH
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Similar results for zirconia



Hybrid membranes from bisfunctional silica precursors
HybSi®

Strategy: replace Si—O—Si bonds by Si—C—C—Si bonds

(OC2H5)3 – Si – CH2 – CH2 – Si – (OC2H5)3

(bis(triethoxysilyl)ethane, BTESE)

Patented in collaboration with Univ. of Twente and Univ. of Amsterdam (Ashima Sah, Andre ten Elshof, 
Hessel Castricum, Marjo Mittelmeijer) 
WO2007081212, 2006; Chem. Commun. 2008, 1103-1105



Hybrid membranes

Mix in EtOH

Water, HNO3 , EtOH Reflux at 60ºC, 3 hrs

Mix

MTES

BTESE

Coating and calcination



Hybrid membranes: 
different precursors for improved performance

Precursors:
Recipe 1 BTESE + MTES
Recipe 2 BTESE
Recipe 3 BTESM

MTES                              BTESE                         BTESM

Hybrid layer



Performance hybrid membranes, 150oC

Fluxes and water conc. in permeate vs. time
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Water flux vs. time
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Feed = 5 wt.% water in nBuOH
Performance hybrid membranes, 150oC

Water conc. in perm. vs. time
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Performance hybrid membranes, 190oC

Fluxes and water conc. in permeate vs. time
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Feed = 5 wt.% water in solvent
Recipe 1Hybrid membranes application testing

Water flux and conc. in perm
in different solvents
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Hybrid membranes application testing Feed = 5 wt.% water in solvent

Water conc. in perm in different solvents
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Acid stability

Feed : 5 wt.% water in n-BuOH
0.005 – 0.5 wt.% HNO3
Recipe 2
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Origins of hydrothermal stability hybrid silica - HybSi®
Si

CH 3-
Si
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H 2C
H 2-

Si

<2d
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• Non-hydrolysable bonds

• Crack propagation limited

• Lower surface diffusion coefficient

• Lower solubility

Time



Conclusions

• High hydrothermal stability

• Wide range of organics possible

• Excellent performance in aggressive solvents

• Good acid stability

• Straightforward preparation, good reproducibility



Next steps
• FOCUS: IMPLEMENTATION

VIA PILOT DEMONSTRATION 

• State of the art membrane
• Further define application window pH, H2O content, solvents
• Create consortium for commercialisation of HybSi®: end user(s), 

membrane producer(s), system integrator(s), supplier(s) enabling parts.
• Launching application(s).

• Further developments:
• Reduce pore size: H2O-EtOH, and hydrogen separation 
• Increase pore size: nanofiltration, MeOH from organics
• Module geometry optimisation

Pilot plant PV/VP installation, 1000 litre liquid
Amem= 1 m2 (24 tubes of 1 meter length)
Tmax = 150oC, Pmax = 10 bar

Si
SiEtO

OEt

OEt

OEt

OEt
OEt



Questions?

Chem. Commun., 2008, 1103-1105
J. Mater. Chem., 2008, 18, 2150-2158
J. Sol-Gel Sci Techn, 2008, DOI: 
10.1007/s10971-008-1742-z
J. Mem. Sci, 2008, 324, 111-118

Patent: WO2007081212 

vanveen@ecn.nl
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