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1 Abstract

Individual pitch control (IPC) is an advanced wind tur-

bine control method for fatigue load reduction. The

conventional IPC algorithm (cyclic pitch control) aims

at achieving 1p blade load reduction by mitigating the

static rotor tilt and yaw moments. Besides these ex-

isting IPC methods, this paper presents a novel ap-

plication of IPC: rotor balancing. Imperfections in the

blades lead to aerodynamic and/or mass unbalance

that result in variations at the rotational frequency

1p in the rotor tilt and yaw moments. The new IPC

algorithm compensates for such rotor unbalance by

adding quasi-steady offsets to the blade pitch angles.

As a second contribution, an “anti-windup” IPC imple-

mentation is proposed for dealing with blade actuator

limitations. Detailed nonlinear simulations are used

to validate the proposed IPC algorithms.

Keywords: wind turbine control, individual pitch con-

trol, load reduction, actuator limitations, anti-windup.

2 Introduction

Modern wind turbines have the possibility of individ-

ually pitching the blades, opening the road towards

the use of advanced individual pitch control (IPC) al-

gorithms for achieving fatigue load reduction. Dif-

ferent effects (e.g. tower shadow, wind shear, yaw-

misalignment, and rotational wind field sampling) re-

sult in blade loads at the rotational frequency (1p) and

multiples of it (1p, 2p, 3p, etc.). Blade load reduc-

tion by IPC can be achieved by using additional mea-

surements, such as blade root bending moments,

shaft bending moments, or tower-top bending mo-

ments measured at the yaw bearing. Using blade root

bending moments measurements with which modern

wind turbines are often equipped, gives rise to a peri-

odic system which complicates the IPC design. This

problem can fortunately be circumvented by trans-

forming all quantities (pitch angles, blade moments,

etc.), defined on the rotating reference frame, to the

fixed frame by using the so-called Coleman transfor-

mation [10], which results in a linear time-invariant

(LTI) model. The blade root flapwise bending mo-

ments, for instance, are transformed into rotor tilt and

yaw moments, which are used by the IPC to com-

pute tilt-oriented and yaw-oriented pitch signals. Thus

the Coleman transformation makes the application of

well-developed control theory for LTI systems to the

IPC problem possible. In addition, the treatment in

fixed-frame coordinates allows for the decoupling of

the collective pitch control (CPC) design from the IPC

design because of negligible interaction in the rele-

vant frequencies.

The use of IPC for 1p blade load reduction has re-

ceived attention in the literature lately [3, 4, 1], where

the conventional approach aims at static rotor tilt and

yaw moments reduction by using integral-type con-

trol. These rotor moments can either be measured

directly (e.g. at the yaw bearing), or can be recon-

structed from measured blade root (or shaft) bending

moments. The IPC computes so-called tilt and yaw

oriented blade pitch signals which are then demod-

ulated by the inverse Coleman transformation into

three individual blade pitch angles. In this way, the

IPC adds almost-periodical blade pitch angle varia-

tions at the 1p frequency to the collective blade pitch

angle. Modern control can be used for the synthesis

of more complex IPC controllers for 2p (and higher)

blade load reduction [3, 4, 7, 5].

Differences in the profile properties of rotor blades,

as well as in the blade pitch setting angles, during as-

semblage lead to aerodynamic unbalance. Moreover,

inaccuracies in the mass properties during assem-

blage lead to mass unbalance. During operation in

cold climates, ice formation can have similar effects.

Neglecting such unbalance can severely degrade the

performance of the IPC load reduction algorithm. A

novel IPC algorithm is proposed that achieves rotor

balancing by pitching the blades to some quasi-static

pitch angles (different for each blade) in such a way,

that the static shaft loads are mitigated.

Bringing modern IPC algorithms into practice neces-

sitates the consideration of the actuator limitations,

expressed as position, velocity and acceleration con-

straints on the blade pitch signals. Due to the intrin-

sic integral type of the IPC algorithms, anti-windup

schemes must be implemented to avoid instability. As

a second contribution of the paper, anti-windup IPC

scheme is developed. To this end, the original pitch

actuator limits are transformed into constraints on the
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Figure 1: Wind turbine individual pitch control

IPC tilt and yaw-oriented pitch signals. This is per-

formed in such a way that the IPC for blade load re-

duction uses only the actuation freedom that is not

used up by the CPC algorithm and the IPC rotor bal-

ancing algorithm, achieving proper overall operation

under the given blade pitch actuator limits.

The proposed IPC algorithms and anti-windup

schemes are demonstrated on nonlinear simulations,

consisting of a detailed structural dynamics model

generated with the software Turbu [10], nonlinear

blade momentum (BEM) aerodynamics (including dy-

namic wake effects and oblique inflow modeling), as

well as realistic blade-element effective wind speeds,

modeling wind shear, tower shadow, tilt and yaw mis-

alignment, wind gusts and stochastic turbulence.

3 IPC for blade load reduction

This section discusses some IPC algorithms for blade

load reduction, paying attention to both conventional

I-type and advanced H∞ control design. The starting

point is the closed-loop interconnection, depicted on

Figure 1, where CCPC denotes the CPC algorithm,

and CG is the generator torque controller. The design

of these basic controllers, CCPC and CG, falls out-

side the scope of this paper. For an overview of basic

wind turbine control, refer to [2, 9].

The IPC controller for blade load reduction can be

based on different measurements, though in this pa-

per we will assume the availability blade root bending

moments measurements since these are common in

modern wind turbines. The use of other measure-

ments (e.g. moments at the shaft or at the yaw bear-

ing) is straightforward. Suppose the following linear

parameter varying model describes the relevant dy-

namics of the wind turbine (possibly including the ba-

sic controllers CCPC and CG) from the three blade

pitch angles θi, and axial blade effective wind speeds

wi, to the three flapwise blade root bending moments

Mzi
, i = 1, 2, 3

ẋ(t)=A(ψ, p)x(t) +B(ψ, p)θ(t) + E(ψ, p)w(t)
Mz(t)=C(ψ, p)x(t) +D(ψ, p)θ(t) + F (ψ, p)w(t)

(1)

where ψ is the rotor azimuth angle,

Mz =
[
Mz1(t) Mz2(t) Mz3(t)

]T
,

θ =
[
θ1(t) θ2(t) θ3(t)

]T
,

w =
[
w1(t) w2(t) w3(t)

]T

and the parameter p = {Ω, θcol, wax} defines the

operating point of the turbine, depending on the ro-

tor speed Ω, the collective blade pitch angle θcol =
1
3 (θ1 + θ2 + θ3), and the driving torque effective wind

speed wdr = 1
3 (w1+w2+w3). Although not explicitly

denoted in the model, the parameters ψ = ψ(t) and

p = p(t) are functions of time. The blade-effective

wind speeds wi are fictitious signals defined in such

a way, that they approximate (in statistical sense) the

effects of full 3D longitudinal turbulence on the driving

moments of the three blades [12].

Notice that for a fixed operating point p(t) = p∗,

above model represents a periodic system, which

complicates the controller design process. However,

by transforming the signals Mz, θ and w (and states

x) to the fixed rotor reference frame, one can convert

this model into an LTI system. This so-called Cole-

man transformation, is based on the matrix

TD(ψ) =





1
3

1
3

1
3

2
3

sin(ψ) 2
3

sin(ψ + 2π
3

) 2
3

sin(ψ + 4π
3

)
2
3

cos(ψ) 2
3

cos(ψ + 2π
3

) 2
3

cos(ψ + 4π
3

)



 (2)

which is used to demodulate the signals defined in

the rotating coordinate frame into non-rotating multi-

blade coordinates




Mcm,1 θcm,1 wcm,1
Mcm,2 θcm,2 wcm,2
Mcm,3 θcm,3 wcm,3



 = TD(ψk)





Mz,1 θ1 w1

Mz,2 θ2 w2

Mz,3 θ3 w3



 .

It has been shown in [10, 11] that this transformation

gives an LTI model in multi-blade coordinates

ẋcm=Acm(p)xcm +Bcm(p)θcm + Ecm(p)wcm
Mcm=Ccm(p)xcm +Dcm(p)θcm + Fcm(p)wcm

(3)

which takes the form of an LTI for a fixed operating

point (i.e. for fixed p), allowing the use of conventional

control design techniques. The resulting IPC should

should then be connected to the original system using

the Coleman demodulation matrix (2) and its inverse:

TM (ψ) =





1 sin(ψ) cos(ψ)
1 sin(ψ + 2π

3 ) cos(ψ + 2π
3 )

1 sin(ψ + 4π
3 ) cos(ψ + 4π

3 )



 .

The first multi-blade coordinate represents averaging

over the blades. In other words, θcm,1 ≡ θcol is



the collective pitch angle, wcm,1 ≡ wdr is the rotor-

averaged axial wind speed. By actuating θcm,2 and

θcm,3, the IPC controller adds up deviations around

the collective pitch angle θcol, which is controlled by

the CPC (see Figure 1). Moreover, it can be shown

that the rotor tilt and yaw moments are approximately

proportional to the second and third multi-blade co-

ordinates of the blade root flapwise moments. More

specifically, when the influence of tensile and shear-

ing forces and pitch-wise moments in the hub cen-

ter are neglected, Mtilt = 3
2Mcm,2 and Myaw =

3
2Mcm,3. For that reason, the second multi-blade

components of the input signals, θcm,2 andwcm,2, are

referred to as tilt-oriented components (having mostly

effect on the rotor tilt moment), while the θcm,3 and

wcm,3 are called yaw-oriented components.

Finally, it should be pointed out that, due to rotational

wind field sampling, tower shadow, and wind shear,

the original blade effective wind speeds wi contain

frequency components at multiples of the rotational

frequency, i.e. 1p, 2p, etc. This results in similar (n.p)

components in the blade root moments Mzi
. In multi-

blade coordinates, however, these n.p frequencies in

wi are demodulated into 3.n.p frequencies in wcm,2
and wcm,3, resulting in 3p, 6p, 9p, etc., components in

Mcm,2 and Mcm,3. More specifically, 1p components

in Mz are transformed into static 0p tilt and yaw mo-

ments, {2p, 4p} frequencies in Mz become 3p com-

ponents in the fixed frame, {5p, 7p} are modulated to

6p, and so on. Interestingly, 3.n.p components in the

flap moments cancel out and have no influence on

the rotor moments. For more inside into the effects of

the Coleman transformation, see [10].

3.1 I-compensator IPC design

As explained above, 1p blade load reduction can be

achieved by means of reducing the static (0p) rotor

moments Mcm,2 and Mcm,3. Due to the negligible

coupling between these at low frequencies, a SISO

approach with two simple I-compensators is suffi-

cient:

θcm,2 =
k2

s
FIPC(s)Mcm,2,

θcm,3 =
k3

s
FIPC(s)Mcm,3,

(4)

where FIPC(s) is series of band-stop filters around

the 3p and 6p frequencies that prevents unnecessary

propagation of these components in Mcm into the

multi-blade pitch angles. A filter at the first tower fre-

quency might also be needed. At steady state, θcm,2
and θcm,3 will converge to some static values, which

after modulation to rotating coordinates, yield cyclic

variations of the three blade pitch angles around θcol,
shifted by 120o:

θi = θcol + sin(ψ + (i−1)2π

3
)θcm,2 + cos(ψ + (i−1)2π

3
)θcm,3

The gains k2 and k3 can be selected to achieve some

desired gain margin mg (e.g. mg = 2). The phase

margin cannot be influenced with kj . To this end, de-

note Tj(s), j = 2, 3, as the transfer function from

θcm,j to Mcm,j in (3), and consider the open-loop

transfer

Lj(s) =
k2

s
FIPC(s)Tj(s).

Due to the lack of poles of L(s) in the open right-half

plane, a standard Nyquist stability analysis can be ap-

plied to compute kj , i.e. kj = 1
mg|Tj(ω180o )| where

ω180o is such that ∠(Tj(ω180o)) = 180o.

3.2 Advanced IPC design

Although the SISO IPC approach above works well in

practice, its stability should be analyzed carefully due

to the neglected coupling between the two considered

channels. These limitations can be removed by using

more complex control structures, based on modern

multivariable control synthesis methods. In fact, mod-

ern control design can also be used to achieve miti-

gation of blade loads at frequencies higher than 1p
(i.e. 2p and higher), although this will not be pursued

in this paper. Higher harmonics control gives rise to

2p and higher components in the blade pitch angles

θi, leading easily to unrealistic actuation demands.

The goal here is to design a stabilizing controller that

minimizes the low frequency components of the ro-

tor moments’ signals Mcm,2 and Mcm,3. In order to

achieve zero steady state rotor moments, an integral

action will be included in the controller. Furthermore,

as was also the case with the simple I-compensator

above, the controller should not be active at the 3p,

the 6p, and possibly the first tower frequency. In ad-

dition to that, no high frequency control activity is de-

sired. To achieve these performance specifications,

an H∞-optimal controller with integral action can be

designed, based on the MIMO transfer function T23

from the external inputs wcm,23 = [wcm,2, wcm,3]
T

and control action θcm,23 = [θcm,2, θcm,3]
T to the

rotor moments Mcm,23 = [Mcm,2,Mcm,3]
T . Figure

2 provides an block-schematic view of the design

model. In order to include integral action into the

controller, the output of the system T23 is appended

with integrators (one integrator per output), which in-

tegrated model is used for an optimal H∞ controller

design C∞
IPC . The final controller is constructed by

moving the integrators, used in the design model, to

the inputs of the computed controller (see the area

inside the dashed curve on Figure 2). In order to

comply with the frequency domain design specifica-

tions, the controller C∞
IPC is designed by minimizing

the H∞ norm of the closed-loop transfer from the ex-

ternal inputs wcm,23 to the weighted integrated rotor

moments and weighted control signals, as shown in

Figure 2 (see the generalized output signal y). The

weighting function Wu should be selected to punish
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Figure 2: Block scheme for IPC design.

control activity at 3p, the 6p, first tower and higher fre-

quencies. The weighting function WM , on the other

hand, needs to put a frequency domain weighting on

the integrated rotor moments. As there is integral ac-

tion in the controller anyway, the lower frequencies

need not to be weighted additionally. Instead, WM

could put additional weighting on low frequencies as

in [8].

The H∞ controller is computed for the augmented

model T aug23

[
y

Mcm,23

]

= T
aug
23

[
wcm,23

θcm,23

]

, T
aug
23 =





[
0 Wu(s)

]

1
s
WM (s)T23(s)
T23(s)





via the following optimization problem [13]

C∞
IPC = arg min

K
‖F(T aug23 (s),K(s))‖∞,

where F(T aug23 (s),K(s)) denotes the closed-loop

system, ‖ · ‖∞ denotes the H∞ system norm, and

wherein the optimization is defined over all controllers

K(s) that have the same number of states as the aug-

mented model T aug23 (s). Moving the integrators back

to the controller results in the final IPC

CIPC(s) =

[
1
s

1
s

]

C∞
IPC(s). (5)

Since the H∞-controller order equals that of the aug-

mented model, model reduction might be desirable.

3.3 Gain-scheduling

The IPC controllers, presented above, are based on

a linearized turbine model, and will thus only achieve

the specified design criteria at the working point

where the model is valid. To achieve improved per-

formance throughout the whole operation range of the

turbine, a gain-scheduling approach can be used. As

the IPC control is only to be active in above-rated wind

conditions, the operating point is (statically) defined

by θcol. Hence, the gain of the IPC controller can be

scheduled as a function of the collective pitch angle

in such a way that the DC gain of the resulting open-

loop transfer function remains constant. More specif-

ically, suppose that the IPC controller CIPC(s) is de-

signed based on the model T23(s), linearized around

some given operating point p∗ = {Ωrat, θ
∗
col, w

∗
dr},

defined by θ∗col, and let T l23(s), l = 1, 2, . . . , L, denote

linearizations of the dynamics from θcm,23 to Mcm,23

around operating points with corresponding θlcol. By

computing off-line the gain matrices

Kl
gs = T23(0).

(
T l23(0)

)−1
, l = 1, 2, . . . , L,

one can gain-schedule the IPC controller based on

the current collective pitch angle θcol(t) as follows

j={l : l = 1, . . . , L, θlcol ≤ θcol(t) ≤ θl+1
col },

α(t)=
θcol − θjcol
θj+1 − θjcol

,

C̃IPC(s)=CIPC(s)
(
α(t)Kl+1

gs + (1 − α(t))Kl
gs

)
.

4 IPC rotor balancing

Rotor unbalance is caused by different aerody-

namic conversion properties of the individual blades,

and by mass distribution differences between the

blades. Aerodynamic unbalance can be represented

by adding extra terms Munb
z,i to the nominal blade

bending moments Mnom
z,1 . The terms Munb

z,i , i =
1, 2, 3, have unequal non-zero mean value, that usu-

ally vary slowly. This unbalance causes nearly con-

stant bending moment coordinates Msh,y and Msh,z

on the rotor shaft. These induce variations in the

tower-top moments Mtlt and Myw around the 1p
frequency. These 1p variations can severely tam-

per with the IPC blade load reduction algorithm as

they get demodulated into 2p pitch angle variations.

This results in additional 2p loads in the flap mo-

ments and 3p loads in the tower top moments. The

bending moment in the rotor shaft is the unbalance-

identifying quantity, and the compensation scheme

below is based on the two shaft moment coordinates

Msh,y and Msh,z, cause by the blade flap moments:

[
Msh,y

Msh,z

]

=

[
− sin 0 − sin 2

3π − sin 4
3π

cos 0 cos 2
3π cos 4

3π

]

︸ ︷︷ ︸

T sh
D





Mz,1

Mz,2

Mz,3



 .

Figure 3 shows the linearized closed-loop config-

uration for the IPC unbalance compensation loop

(patent application filed, August 2008). The de-

scribed method relies on shaft bending moment re-

construction from blade root flap moments. Another

reconstruction option, not explored here due to space

limitation, comprises the 1p modulation of measured

tilt and/or yaw moment on the tower top.

The shaft moment coordinates Msh,y and Msh,z are

first mapped to virtual pitch angle variations θsh,y and

θsh,z along the shaft unit vectors, and then are trans-

formed back to actual pitch angle variations




θbal,1
θbal,2
θbal,3



 = T shM

[
θsh,y
θsh,z

]

, T shM =
2

3





− sin 0 cos 0
− sin 2

3π cos 2
3π

− sin 4
3π cos 4

3π



 ,
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which are added to the blade pitch angle variations

from the CPC and IPC blade load reduction algorithm.

To design the balancing controller CBAL, the wind

turbine model from θsh,y and θsh,z to Msh,y and

Msh,z is needed. The transfer from θi to Mz,i is

azimuth-dependent (see (1)). However, at low fre-

quencies (typically below 0.1 Hz), the model can be

approximated by a static, azimuth-independent and

diagonal with the same gain for the two channels, i.e.

Msh,y ≈ kθsh,y and Msh,z ≈ kθsh,z. For such a low

bandwidth, the phase is negligible. This allows the

use of a simple controller structure, consisting of a

first-order low-pass filter and integral action

[
θsh,y
θsh,z

]

=
c0
s

1

τs+ 1

[
Msh,y

Msh,z

]

,

giving closed-loop disturbance rejection

T clsh(s) =
1

1 + k c0
s

1
τs+1

=
τs2

kc0
+ s

kc0
τs2

kc0
+ s

kc0
+ 1

.

The controller parameters c0 and τ are then chosen to

yield a critically damped desired closed-loop system

(β = 1) with given settling time Tset (e.g. 50 sec)

T cl,desiredsh (s) =
1
ω2 s

2 + 2β
ω0

s

1
ω2 s2 + 2β

ω0

s+ 1
,

with ω = 4
Tsetβ

. This is achieved with

τ =
Tset
8
, c0 =

2

kβ2Tset
.

5 Anti-windup implementations

The pitch actuators in wind turbines have limits, and

it is crucial that these limits are properly taken care of

in the control algorithm. This is especially important

for controllers with integral terms, as is the case with

the discussed IPC algorithms above, as otherwise the

well-known windup effect can occur, resulting in de-

graded performance or even instability. In this sec-

tion, it is shown how anti-windup can be achieved

for the IPC algorithm. Implementation of anti-windup

scheme for the CPC algorithm is just as important,

but less involved and lies outside the scope of this

paper.

Since the IPC algorithm is defined in the non-rotating

reference frame, the original blade pitch angle, speed

and acceleration limits need to be translated to multi-

blade coordinates before an anti-windup scheme can

be applied. Moreover, in order to make sure that

the IPC algorithm does not tamper with the CPC, it

should only use the actuation freedom that is not used

up by the CPC (and the rotor balancing IPC). In this

way, proper simultaneous operation of all control al-

gorithms is achieved, with priority to CPC.

The following positions, speeds and accelerations

hard limits are considered for the blade actuators,

i = 1, 2, 3,

θmin ≤ θi ≤ θmax,

θ̇min ≤ θ̇i ≤ θ̇max,

θ̈min ≤ θ̈i ≤ θ̈max,

(6)

where the minimum and maximum values are as-

sumed given. Part of this total actuation freedom is

attributed to the basic CPC algorithm and the rotor

balancing IPC, and it is assumed that the following

limits are met at all time

θmin ≤ θcolmin ≤ θcol ≤ θcolmax ≤ θmax,

θ̇min < θ̇colmin ≤ θ̇col ≤ θ̇colmax < θ̇max,

θ̈min < θ̈colmin ≤ θ̈col ≤ θ̈colmax < θ̈max.

(7)

Notice that the speed and acceleration constraints for

the CPC action are chosen strictly inside the actua-

tor limits, hence always leaving some freedom for the

IPC controller. For the pitch angle it is not always

possible to select θmin < θcolmin strictly, as would be

the case when the lower pitch angle bound θmin co-

incides with the working position at below-rated con-

ditions (which should be reachable by θcol).



5.1 Multi-blade pitch limits

Defining ψi
.
= ψk + 2π(i−1)

3 as the azimuth angle of

blade i, we can then write

θi = θcol + sin(ψi)θcm,2 + cos(ψi)θcm,3, i = 1, 2, 3.

Clearly, the IPC actions θcm,2 and θcm,3 have effect

on all three blade angles, speeds and accelerations.

Still, they should not lead to the original actuator limits

(6) getting exceeded. To achieve this, limits on the

IPC actions θcm,2 and θcm,3 will be derived for which

(6) remain valid. It is desirable that these limits do not

(explicitly) depend on the rotor azimuth ψk. To this

end, the remaining freedom in the actuators after the

CPC controller will be distributed among the two IPC

controls. Define

θrest
.
= max{0,min{θmax − θcol, θcol − θmin}},

θ̇rest
.
= max{0,min{θ̇max − θ̇col, θ̇col − θ̇min}},

θ̈rest
.
= max{0,min{θ̈max − θ̈col, θ̈col − θ̈min}},

where the current collective pitch speed θ̇col and ac-

celeration θ̈col should be substituted by their finite dif-

ference approximations.

Denoting

J(ψ, θcm,2, θcm,3)
.
= sin(ψ)θcm,2 + cos(ψ)θcm,3,

the purpose of this section is to derive limits on

the IPC angles θcm,2 and θcm,3, as well as on their

speeds and accelerations, such that for any ψ the fol-

lowing inequalities are satisfied
∣
∣
∣
∣
∣
∣





J(ψ, θcm,2, θcm,3)

J̇(ψ, θcm,2, θcm,3)

J̈(ψ, θcm,2, θcm,3)





∣
∣
∣
∣
∣
∣

≤





θrest

θ̇rest

θ̈rest



 . (8)

To keep the problem tractable, we distribute the avail-

able freedom between the two IPC controls. In doing

this, however, we do not use a constant factor, but

rather look at the “activity” of the two signals. If, for

instance, there is large rotor yaw misalignment, this

will give raise to a large rotor tilt moment, so that θcm,2
will need to get larger to compensate this, while at the

same time the yaw-oriented component θcm,3 might

be negligible. Hence, we will distribute θrest (and,

of course, θ̇rest and θ̈rest) by looking at the values

of θunlimcm,2 and θunlimcm,3 , required by the IPC controller

before applying any limits on them, so that the sig-

nal that is larger in absolute value gets more freedom

than the “less active” signal. This idea is used in the

following to derive the limits on the IPC signals θcm,j ,

θ̇cm,j , θ̈cm,j , j = 2, 3.

Position limit: J(ψ, θcm,2, θcm,3) ≤ θrest

To begin with, consider the first constraint in (8), and

suppose that α2 > 0 and α3 > 0 are two given

scalars, such that

|θcm,j | ≤ αjθ
rest, j = {2, 3}. (9)

Then it holds that,

[maxψ J(ψ, θcm,2, θcm,3) ≡
√

(θ2cm,2 + θ2cm,3]

≤ θrest
√

α2
2 + α2

3.

Since we need to make sure that J(ψ, θcm,2, θcm,3) ≤
θrest for all ψ, the scalars α2 and α3 should be such

that α2
2 + α2

3 = 1. Moreover, from the discussion

above, we would like that the ratio between the limits

for θcm,2 and θcm,3 is proportional to the ratio between

|θunlimcm,2 | and |θunlimcm,3 | (i.e. the ratio between the IPC

controller outputs before applying any limits). This

implies that

α2

α3
=

|θunlimcm,2 |

|θunlimcm,3 |
.

Solving this equality together with α2
2 + α2

3 = 1 gives

αj
.
=

∣
∣θunlimcm,j

∣
∣

√

(θunlimcm,2 )2 + (θunlimcm,3 )2
, j = {2, 3}, (10)

which, with (9), ensures the first inequality in (8).

Speed limit: J̇(ψ, θcm,2, θcm,3) ≤ θ̇rest

Consider the speed constraint in (8), written as

J̇(ψ, θcm,2, θcm,3)= J̇2(ψ, θcm,2) + J̇3(ψ, θcm,3),

J̇2(ψ, θcm,2)
.
=Ωcos(ψ)θcm,2 + sin(ψ)θ̇cm,2,

J̇3(ψ, θcm,3)
.
=−Ωsin(ψ)θcm,3 + cos(ψ)θ̇cm,3.

In this case, similarly to what we did above for the

position limit, we distribute θ̇rest between J̇2(ψ, θcm,2)

and J̇3(ψ, θcm,3) by using β2 and β3, such that

|J̇j(ψ, θcm,j)| ≤ βj θ̇
rest, j = {2, 3}, (11)

implying

max
ψ

J̇(ψ, θcm,2, θcm,3) = (β2 + β3)θ̇
rest,

so β2 + β3 = 1 must hold. This, together with

β2

β3
=

|θunlimcm,2 |

|θunlimcm,3 |
,

gives

βj
.
=

∣
∣θunlimcm,j

∣
∣

∣
∣θunlimcm,2

∣
∣ +

∣
∣θunlimcm,3

∣
∣
, j = {2, 3}. (12)

It remains to rewrite (11) in terms of θcm,j and θ̇cm,j .
Here, there is another degree of freedom in the choice

of distributing βj θ̇
rest over the position θcm,j and

speed θ̇cm,j . For that purpose, we choose factors

γpos > 0 and γspd > 0 such that for some θ̇restj > 0
(derived below) we require that

|θcm,j | ≤ γposθ̇
rest
j ,

|θ̇cm,j | ≤ γspdθ̇
rest
j .

(13)



limiter+
-

limiter
+ -

TD(ψk) C∞
IPC(z) ts

z−1

z−1

θcm,2

θcm,3

TM (ψk)
Mcm,2

Mcm,3

Mz,1

Mz,2

Mz,3

θipc1

θipc2

θipc3

θunlimcm,2
θunlimcm,3

θcm,1
Mcm,1

Figure 4: IPC anti-windup scheme

To derive an expression for θ̇restj , note that

maxψ J̇j(ψ, θcm,j) =
√

(Ωθcm,j)2 + θ̇2cm,j

≤ θ̇restj

√

γ2
posΩ

2 + γ2
spd.

Hence, inequality (11) will be satisfied for

θ̇restj =
βj θ̇

rest

√

γ2
posΩ

2 + γ2
spd

, (14)

with βj defined in (12).

Acceleration limit: J̈(ψ, θcm,2, θcm,3) ≤ θ̈rest

For the acceleration limit in (8), we can write

J̈(ψ, θcm,2, θcm,3) = J̈2(ψ, θcm,2) + J̈3(ψ, θcm,3),

J̈2(ψ, θcm,2)
.
= (θ̈cm,2 − Ω2θcm,2) sin(ψ)

+(2Ωθ̇cm,2 + Ω̇θcm,2) cos(ψ),

J̈3(ψ, θcm,3)
.
= (θ̈cm,3 − Ω2θcm,3) cos(ψ)

−(2Ωθ̇cm,3 + Ω̇θcm,3) sin(ψ).

Similarly to the speed limit case, we distribute θ̈rest

between J̈2(ψ, θcm,2) and J̈3(ψ, θcm,3) by using the

same scalars β2 and β3 as in (12)

|J̈j(ψ, θcm,j)| ≤ βj θ̈
rest, j = {2, 3}, (15)

since then we get maxψ J̈(ψ, θcm,2, θcm,3) = θ̈rest,
as required in (8). Now we have even more free-

dom than in the speed limit case above, since we

have to distribute βj θ̈
rest between three components:

the position θcm,j , the speed θ̇cm,j and the accelera-

tion θ̈cm,j . To do this, we choose, in addition to the

already chosen factors γpos and γspd, a third factor

γacc > 0, and we impose the following constraints for

some θ̈restj > 0 that is yet to be derived

|θcm,j | ≤ γposθ̈
rest
j ,

|θ̇cm,j | ≤ γspdθ̈
rest
j ,

|θ̈cm,j | ≤ γaccθ̈
rest
j .

(16)

Under these constraints we have

maxψ J̈j(ψ, θcm,j)

=
√

(θ̈cm,j − Ω2θcm,j)2 + (2Ωθ̇cm,j + Ω̇θcm,j)2

≤ θ̈restj

√

(γacc + Ω2γpos)2 + (2Ωγspd + Ω̇γpos)2

Inequality (15) will then be satisfied under constraints

(16) with

θ̈rest
j =

βj θ̈rest

√

(γacc+Ω2γpos)2+(2Ωγspd+Ω̇γpos)2
(17)

and βj defined in (12).

5.2 Anti-windup scheme

To summarize, the final limits on the IPC ac-

tions in multi-blades coordinates are obtained by

combining (9),(13),(16) together with the scalings

(10),(12),(14),(17). In order to describe how the anti-

windup scheme should finally be implemented into

the wind turbine controller, we assume below that the

IPC controller is discretized with sampling period of ts
seconds, and will approximate the speeds and accel-

erations with finite differences. At time instant k, the

following constraints should then be active

|θcm,j(k)|

≤ min
{

αjθ
rest, γposθ̇

rest
j , γposθ̈

rest
j

}

(18)

|θcm,j(k) − θcm,j(k − 1)|

≤ min
{

tsγspdθ̇
rest
j , tsγspdθ̈

rest
j

}

(19)

|θcm,j(k) − 2θcm,j(k − 1) + θcm,j(k − 2)|

≤ t2sγaccθ̈
rest
j (20)

Notice, that both IPC controllers (4) and (5), dis-

cretized with sampling period ts, have the same gen-

eral representation

CIPC(z) =

[
ts

1−z−1

ts
1−z−1

]

C∞
IPC(z),

consisting of integrators at the output, followed by a

transfer function (filter). As discussed in [6], in order

to achieve an anti-windup mechanism one needs to

make sure that the integrator states are driven by the

actual (constrained) inputs θcm,2 and θcm,3. This can

be achieved easily by implementing the integrators by

using one sample delay feedback around the limiters,

as shown in Figure 4. The two limiters, having the

same structure, but realizing the bounds in (18)-(20)

for j = {2, 3}, are shown in Figure 5.
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Figure 5: IPC pitch limiter realization

5.3 Limits under blade speed control

Above, the discussion was focused on the blade

pitch angles θi being the control signals. In prac-

tice, however, it is sometimes the case that the pitch

speeds θ̇i are the control variables, which leads to

controller structures that contain no integrators. In-

deed, an I-compensator for IPC will take the form of

a P-compensator when the pitch speed is used. For

P and PD controllers, windup is not an issue, so the

anti-windup scheme, presented in section 5.2, will not

be an issue. In this case, the limiter block can be posi-

tioned simply after the controller. However, the limiter

will have a different structure than the one in Figure

5. The reason for this is that the controller does not

output a position signal. In order to incorporate po-

sition constraints, actual blade angle measurements

θmeasi (k) are necessary, which we again transform

to multi-blade coordinates θmeascm,j using the Coleman

demodulation matrix TD(ψ) (2). The corresponding

limiter scheme is depicted on Figure 6.

6 Nonlinear simulation study

In this section, the methods, discussed above are

demonstrated via realistic nonlinear wind turbine sim-

ulations. The simulation model is briefly described

in the next subsection, after which the results of dif-

ferent simulations are presented, aiming to illustrate

the influence of IPC on the blade loads, the operation

of the rotor balancing IPC algorithm in case of blade

pitch unbalance, as well as the effect of the proposed

+- ++

θ̇unlimcm,j θ̇cm,j

θmeascm,j

z−1

equation (20) equation (19)

Figure 6: Limiter realization under speed control

IPC anti-windup scheme.

6.1 Simulation model

The nonlinear wind turbine simulation model, used for

generating the results in this paper, consists of the

following components:

◦ 156-th order linearized structural dynamics model

(SDM), obtained using the software Turbu [11]. A

multi-body approach has been used to obtain this

detailed SDM. The multi-body model has 14 ele-

ments per blade and 15 elements for the tower, with

each element having 5 degrees of freedom. There

are 6 degrees of freedom in the rotor shaft, and 12
for the pitch-servo actuation system. A linearization

is computed for an aerodynamic equilibrium state

at a mean wind speed of 15 m/s, rotor speed of ap-

prox. 17, 7 rpm and blade pitch angle of 7, 24 deg.

◦ nonlinear aerodynamic conversion module (ADM),

based on blade element momentum (BEM) the-

ory, including dynamic wake effects, the effects of

oblique inflow on the axial induction speed, and an-

gle of attack correction due to rotor coning. The

ADM computes forces and torques per blade ele-

ments, which are used to load the SDM. See [8] for

details on the ADM.

◦ basic CPC controller, regulating the filtered gen-

erator speed at its rated level (when operating

at above-rated conditions). It consisting of a PI-

controller in series with low-pass filter at the 3p
blade frequency, notch filter at the first tower side-

wards frequency, and notch filter at the first collec-

tive lead-lag frequency. An anti-windup scheme is

implemented for this CPC controller to guarantee

that constraints (7) are satisfied.

◦ nonlinear generator torque controller based on

static optimal-λQN-curve at below rated conditions

and constant power production above-rated, oper-

ating on the filtered generator speed signal (same

three filters used as in pitch controller).

◦ IPC: the advanced H∞ controller does not per-

form significantly better than the conventional I-

compensator, the later is used in the simulations
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Figure 8: Pitch angle, speed and acceleration refer-

ence anti-windup IPC for blade load reduction

reported here. The gain scheduling is done based

on support points corresponding to mean wind

speeds, equally spaced over intervals of 1 m/s.

◦ realistic blade effective wind speed signals are

generated based on the helix approximation con-

cept, as proposed in [8, App. C], including both de-

terministic terms for wind shear, tower shadow, tilt

and yaw misalignment, wind gust, and a stochastic

term for blade-effective turbulence. The mean wind

speed, used in the simulations, is 20 m/s, reaching

the rotor at oblique inflow angle of 10 degrees.

6.2 IPC for blade load reduction

To evaluate the performance of the proposed ad-

vanced IPC scheme for 1p blade load reduction, three

simulations have been performed:

◦ Case 1: without IPC control.

◦ Case 2: with IPC for blade load reduction, no pitch

limits,

◦ Case 3: with IPC for blade load reduction, pitch

limits included.

The resulting blade 1 flapwise root bending moment

spectrum for the three cases are plotted in Figure

7. Clearly, a significant reduction of blade loads is

achieved around the 1p frequency, both without and

with pitch limits (anti-windup), although the later case
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Figure 9: Pitch angles from rotor-balancing IPC (top),

total pitch angle reference sent to pitch actuators

(middle), actual pitch setting angles (bottom)
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Figure 10: Rotor shaft moment spectrum for Case 4

(solid) and Case 5 (dashed)

gives slightly less reduction, as expected. Figure 8

shows the pitch angle, speed and acceleration under

Case 3, together with their limits, given in Table 1.

6.3 Rotor balancing

For demonstrating the rotor balancing algorithm, two

simulations are used:

◦ Case 4: no rotor balancing, no IPC, no pitch limits

◦ Case 5: rotor balancing, no IPC, no pitch limits

In both Cases 4 and 5, aerodynamic unbalance is in-

troduced by adding offsets to the three blade pitch

angles of respectively −1, 3 and −2 degrees. From

the top plot in Figure 9 it can be seen that the IPC ro-

tor balancing algorithm cancel the rotor unbalance by

pitching the blades to values opposite to the modeled

offsets, which is done by nearly zeroing the slowly

varying mean shaft moment (see Figure 10).

6.4 Blade load reduction and balancing

Finally, a simulation is performed under aerodynamic

rotor unbalance (as in Cases 4 and 5) and with both

IPC controllers activated, i.e.

◦ Case 6: rotor balancing and IPC for blade load re-

duction, pitch limits included.



parameter θmin θmax θ̇min θ̇max θ̈min θ̈max θ
col
min θ

col
max θ̇

col
min θ̇

col
max θ̈

col
min θ̈

col
max γpos γspd γacc

value 0 85 -8 8 -15 15 0 85 -4 4 -5 5 4 1 8

dimension o o o/s o/s o/s2 o/s2 o o o/s o/s o/s2 o/s2 - - -

Table 1: Numerical values of the algorithm parameters

0 0.2 0.4 0.6 0.8 1
0

5

10
x 10

12

S
δ 

M
z [(

N
m

)2 ]

0 0.2 0.4 0.6 0.8 1
0

5

10x 10
12

Frequency [Hz]

S
δ 

M
sh

 [(
N

m
)2 ]

Figure 11: Blade root flapwise moment (top) and

shaft moment (bottom) under Case 4 (solid) and

Case 6 (dashed)

This simulation case is compared to Case 4 (aerody-

namic unbalance, no IPC), and the results are pre-

sented in Figure 11. Clearly, the oblique wind inflow

results in a large 1p blade root moment, which is ex-

cellently mitigated by the IPC for blade load reduction

(top plot), while the large static shaft moment created

by the aerodynamic unbalance is reduced by the ro-

tor balancing scheme by pitching the blades to an-

gles opposite to the simulated offsets (bottom plot).

Although not plotted due to space limitation, the anti-

windup implementation ensures that the blade pitch

angles, speeds and accelerations remain within the

specified limits.
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8 Conclusions

This paper discusses different approaches for fatigue

load reduction in wind turbines based on IPC al-

gorithms. Besides the usual IPC aim for 1p blade

load reduction, a novel method for rotor balanc-

ing IPC is presented that works by mitigating static

shaft moments. Special attention is paid on gain-

scheduling, dealing with actuator constraints and pre-

venting windup. Detailed realistic nonlinear simula-

tions are used to validate the methods, paving the

way towards practical application.
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