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Abstract

The ECN computer code TURBU generates elabo-
rate linearised models for 3-bladed wind turbines.
These models include the relevant features for
control design and aeroealastic stability analysis;
they are very well workable because of modally re-
duced blade tower models. Control loops for blade
and tower load reduction were designed for a typ-
ical multi-MW wind turbine. A TURBU model
was used for analytic examination of the closed
loop performance and stability. These ‘closed loop
predictions’ appeared valid when the control loops
were evaluated in non-linear time domain simula-
tion. These simulations showed significant load
reduction and good closed loop stabilty. The fa-
tigue loads in full load operation were reduced by
10% to 30% for the rotor blades and 4% to 6% for
the tower.

Keywords: control design model, closed loop
aeroelastic analysis, transfer functions, load re-
duction.

1 Introduction

The integrated assessment of control and aero-
elastic stability for modern and future multi-MW
turbine requires the availability of tools that com-
bine accurate structural models with the capabil-
ity of transfer function analysis. The ECN com-
puter code TURBU has been developed with this
in mind. Initially, the development of TURBU

was focussed on load calculation for offshore wind
turbines in the frequency domain, based on earlier
work of Dragt [1], [2]. Preliminary load calcula-
tions with TURBU and the layout of the model
were presented on the EWEC 2004 in London [3].

TURBU is programmed in the MATLAB pro-
gramming language [4]. It generates a complete
linearised aerohydro-elastic model with control,
wave and wind inputs for 3-bladed wind turbines.
The approach is similar to that adopted by Mc-
Coy [5]. However, TURBU allows for very accu-
rate aeroelastic modelling by enabling prebend,

shear offset and unsteady aerodynamics and by
taking into account the average deformation. In
addition, it allows for order reduction in the struc-
tural models and it is strongly based on a modular
approach, which facilitates convenient implemen-
tation of extensions in future. Finally, TURBU is
a stand-alone computer program.

The first part of this paper is dedicated to the
composition of the model. Together with appen-
dix A, this part gives a complete explanation of
the model, which exceeds by far the description
in [3]. Addressed items are:

• components and underlying model equations;
• non-linear solution of the equilibrium state;
• linear model equations and integration to a

dynamic wind turbine model.

The second part deals with the use of the model
for control design. Addressed items are

• pitch servo behaviour;
• synthesis of feedback structures;
• closed loop transfer functions;
• non-linear time-domain evaluation.

2 Component modelling

In TURBU Offshore a modularised set-up is ob-
tained by idealising the wind turbine to an assem-
blage of distinct substructures or components –
the tower/nacelle, the drive train, and the blades
– which in turn consist of one or more discrete,
rigid elements (see figure 1). This modularisa-
tion enables to include control loops and to deal
with special features like a (free) flapping hinge
and dynamic yawing in a well organised and un-
constrained way. Figure 1 shows in the right-hand
under corner, on the basis of the fore-aft tower de-
formation, that the mechanical modelling is based
on a co-rotational formulation for beam elements.
See a.o. [7] and [8] for this subject. Each element
has a local coordinate system. The orientation of
this coordinate system results from all (bottom-
up) foregoing angular displacements and the local
additive angular displacements. The latter oc-
cur in the entry point of the concerning element.
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Figure 1: Assemblage of substructures from ele-
ments

These entry points also may accommodate de-
grees of freedom (DOFs) for linear displacements.
The span from the entry point after the DOFs to
the exit point of an element is a rigid bar (unde-
formable). The bending and torsion behaviour of
the tower and rotor blades is modelled via these
rigid elements with DOFs in the entry points for
springs and dampers.

Componenent models are created for the rotor
blades, the drive-train, and the support structure.
Next to DOFs for bending and torsion, the rotor
blades allow DOFs for flap- and leadwise hinges,
full span blade pitching, and dynamic setting of
the profile coefficients (unsteady aerodynamics).
Also additional support structure DOFs apply;
for roll, tilt and yaw of the nacelle, and the corre-
sponding translations, as well as for full flexibility
of the foundation. DOFs in the drive-train allow
for torsion and bending of the rotor shaft, con-
strained by a main bearing, for rotor speed varia-
tion, and for co-axial gearbox house rotation.

Also the behaviour of the wake is accommodated
in a ‘component model’, in which the axial and
tangential induction speeds in the rotor annuli are
the DOFs.

2.1 Rotor blade model

Each rotor blade is modelled via an assemblage of
four submodels. Consider the model for the rotor
blade D as depicted in figure 2.

Two of the submodels, typed asDf andDp, model
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Figure 2: Blade model as assemblage of submodels

the structural and quasi-steady aerodynamic be-
haviour of the blade flange and the blade pro-
file & structure. The (structural) blade model
consists of N elements: one element models the
flange behaviour via submodel Df ; the remain-
ing N−1 elements model the deformation behav-
iour of the rotor blade via submodel Dp (typi-
cal N = 14). All N blade elements are loaded
by concentrated gravity forces and aerodynamic
forces and torques. The remaining two submod-
els, typed as Dc and Da, model the full-span pitch
servo actuator and the unsteady aerodynamic be-
haviour.

The pitch actuator submodel Dc emits a pitching
torque to the flange Df . This pitching torque acts
as a responsive torque in the entry point of Df ,
that is to say it acts in opposite direction upon
the drive-train R.

The unsteady aerodynamics submodel Da pro-
vides dynamic additions to the aerodynamic pro-
file coefficients for all N blade elements.

The underlying model equations for the flange and
profile & structure, the pitch servo actuator and
the unsteady aerodynamic conversion are given in
appendix sections A.1.1 A.1.2 and A.1.3.

2.2 Drive-train model

The drive-train is modelled via submodels Rf and
Rr for the generator rotor and the rotor shaft &
hub. Figure 3 shows the interactions of the drive-
train model R with the support structure, rotor
blades and the environment.

The rotor shaft & hub Rr is loaded by a concen-
trated gravity force and by the force and torques
from the rotor blades in the rotor centre Rc

r . The
rotor centre is the location on the shaft axis with
the shortest distance to the centre of the pitch
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Figure 3: Drive-train as assemblage of submodels

bearing.

The mass and inertia moments of the rotating
part of the gearbox are added to the masses of
the shaft & hub. The transmission ratio igb of
the gearbox governs that the fraction 1/igb of the
outgoing co-axial torque is fed into the generator
rotor Rf . The remaining outgoing loads are trans-
mitted to the gearbox house. All load exchange
for Rr is assumed to occur in the rotor centre. In
subsection A.2.1 it is clarified that this is allowed
under the assumption of rigid nacelle behaviour.

An extern (co-axial) generator torque is emitted
to the generator rotor Rf . This torque acts as
a responsive torque that facilitates variable speed
operation; it acts in opposite direction upon the
support structure S. Since the load exchange for
Rf only concerns a torque, it may be located any-
where under the assumption of rigid nacelle be-
haviour; we chose the rotor centre for this (fast
shaft) torque loading. The mass and non-coaxial
inertia moments of Rf are added to those of the
nacelle Sn.

The underlying model equations for the rotor
shaft & hub and the generator rotor are are given
in appendix sections A.2.1 and A.2.2.

2.3 Support structure model

The support structure is modelled via four sub-
models. The two submodels Sf and St estab-
lish the structural and hydrodynamic behaviour
of the tower just as the flange and blade & pro-
file submodels Df and Dp cater for the strucutral
and aerodynamic behaviour of the rotor blade D.
The ond-element submodel Sn is used for includ-

ing the nacelle. Finally, the gearbox house is a
non-rotating subcomponent and is added as the
fourth submodel to the support structure. Since
it physically belongs to the drive-train it is typed
Rh.
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Figure 4: Support structure as assemblage of sub-
models

The (structural) support structure model consists
of M elements (gearbox house not included): the
first element models the foundation behaviour via
submodel Sf , the elements 2 up to M−1 model the
deformation behaviour of the tower via submodel
St, and the last element models the nacelle behav-
iour via submodel Sn (typical M = 15). All M
blade elements are loaded by concentrated grav-
ity forces. For an offshore turbine, the underwa-
ter tower elements and the foundation element are
also loaded by concentrated hydrodynamic forces
and torques.

The gearbox house Rh just feeds through all loads
from the drive-train except the co-axial torque.
An extern co-axial support torque is emitted to
the gearbox house Rh, which facilitates gearbox
house rotation; this torque acts as a responsive
torque and acts in opposite direction upon the
nacelle. The mass and inertia moments of Rh are
added to those of the nacelle Sn.

An extern yawing torque is emitted to the na-
celle Sn. This responsive torque facilitates dy-
namic yawing; it acts in opposite direction upon
the top of the tower St.



Forces and torques in three directions can be
added as independent loading on the gearbox
house, located in the rotor centre. These are
non-responsive loads; they are to be considered
as loads such as caused by the wind or gravita-
tion. TURBU provides values for these loads that
just compensate for the average gravitation loads
in the standstill frame, average loads that result
from the periodic gravity loading of the blades in
the rotating frame.

Forces and torques in three directions can also
be added as independent loading on the tower,
located in the centre of the tower top (= yaw
bearing centre). These non-responsive loads can
be used for simulation of damper devices in the
tower top. It must be remarked that all reaction
loads on these devices as well as the inertia effects
perpendicular to their effecutation orientation are
not included in the structural behaviour of the
support structure.

The underlying model equations for the gearox
house, nacelle, and tower and foundation are are
given in appendix sections A.3.1, A.3.2, and A.3.3.

2.4 Wake model

The modelling of the induction behaviour is based
on Blade Element Momentum theory (BEM), as
described in [11]. The steady state behaviour is
extended with Prandtl’s correction to account for
the influence of the wake. Corrections to the 2D
lift polar that account for 3D-effects are not in-
cluded in TURBU and thus have to be performed
beforehand and added to the input files with lift
polars.

The dynamic wake behaviour is accounted for via
the ECN Differential Equation model for dynamic
inflow as described in [15] and verified in [14]. In
this way only the transient behaviour of the rotor-
annulus uniform induction speed is included. In
figure 2 it has been shown that the reaction forces
of the lift forces on the rotor blades are interaction
input signals to the wake model; extern input sig-
nals are the axial, lateral and vertical wind speed
coordinates in the intersections of the blade ele-
ments with annuli in the wake. The wake model
provides the annulus-uniform axial and tangential
induction speeds to the rotor blade elements.

The underlying BEM-based model equations are
described in appendix section A.4.

3 Equilibrium conditions

Since TURBU is used for linear analysis, the equi-
librium conditions have to be determined before
the linear model formulation can be established.

The driving variables for the equilibrium condi-
tions are the mean values of the wind speed, the
rotational speed, yaw misalignment angle and the
pitch angles; the latter are assumed to be equal for
the three rotor blades. The variables that define
the equilibrium conditions are

• equilibrium driving variables;
• mean induction speeds in the rotor annuli;
• mean values of angular and linear DOFs

Actually, the mean yaw angle misalignment and
pitch angles define the mean values of the yaw-
oriented DOF in the nacelle and the pitch-
oriented DOF in the flange of the blades. All
mean loads on the wind turbine and mean dis-
placements are derived from these equilibrium
defining variables. In TURBU an iteration proce-
dure has been implemented for the determination
of the equilibrium. Each iteration consists of four
steps.

The iteration procedure is preceeded by setting
the mean values of the angular DOFs of the blades
equal to the configuration values, derived from the
cone and pitch angle and skewness and prebend
specifications. The mean values of the angular
DOFs of the drive-train and support structure, as
well as the mean values of all linear DOFs are set
equal 0. The mean deformation values of all DOFs
are initially set to 0. The sum of the configuration
and the mean deformation values of the DOFs set
up the average shape of the components.

The following four calculation steps are performed
sequentially in each iteration:

• solution of the BEM-equations that yield the
axial and tangential induction speed values in
the rotor annuli for the rotor layout that be-
longs to the lately determined average shape
of the rotor, drive-train and support struc-
ture (equation (72));

• solution of the steady-state rotor blade im-
pulse equations that yield the mean deforma-
tion values of the angular and linear DOFs for
the lately determined induction state of the
rotor annuli and average shape of drive-train
and support structure (equation (25); non-
zero average accelerations in the rotating-
frame);

• solution of the steady-state drive-train im-
pulse equations that yield the mean defor-



mation values of the co-axial DOFs for the
rotor loading that belongs to the lately deter-
mined induction state and average shape of
rotor and support structure (equation (54));

• solution of the steady-state support structure
impulse equations that yield the mean defor-
mation values of the angular and linear DOFs
for the loading that belongs to the lately de-
termined induction state and average shape
of the rotor and drive-train (equation (64));

All solution procedures except that for the the
drive-train consist of iteration procedures by
theirselves.

The solution procedure for the BEM-equations
may also be directed by the user to calculate
the required pitch angle for achieving nominal
power. The equilibrium driving parameter then
is the nominal power instead of the pitch angle.
In that case the BEM solution procedure consists
of nested iterations in which the outer loop is gov-
erned by pitch angle search.

Because of axi-symmetry the mean values of the
bending DOFs of the drive-train remain 0.

The overall procedure appears to work well for
very flexible blades too. For slapstick blades con-
vergence problems arise, but these are not ex-
pected to be realistic.

4 Integrated dynamic model

The integrated dynamic model is set up by cou-
pled differential equations that describe the be-
haviour of the rotor blades, the drive-train, the
support structure and the wake around the equi-
librium state. First is described how the required
formulations for the component models are ob-
tained from the model equations derived in sec-
tion 2. Afterwards the merging procedure for the
component models is explained, which includes
the connection of the different models and the
transformation to fixed-frame coordinates. Fi-
nally, the reduction of the model order is de-
scribed.

4.1 Component models

The dynamic component models are to be for-
mulated as linear first order state space repre-
sentations. This enables to link them together
in a convenient way. The linear dynamic behav-
iour and the mapping of input to output variables
is then described by the following matrix-vector

equations:

d
dt(z) = A · z + B · v

y = C · z + K · v

Vectors v, z and y respectively contain the inputs,
state variables and outputs (all variations). Ma-
trices A,B,C and K are the transition, input,
output and feedthrough matrix.

The next four paragraphs describe the building of
the state space representations for the dynamic
behaviour of the rotor blades, the drive-train, the
support structure and the wake.

4.1.1 State space model & submodels ro-
tor blade

The submodels of the blade flange Df and pro-
file & structure Dp are derived from the normal
differential vector equations by equation (25). To
this aim, we have to formulate the edge, flat and
pitch oriented coordinates of these vector equa-
tions along the best possible approximations of
the true axes for edge-, flat- and pitch-wise de-
formation. It is along these axes that the visco-
elastic responsive loads in correspondence with
equation (33) apply.

The coordinates in equation (25) pertain to the

⇒ final coordinate system e
→D

3

(x,y,z),

which originates from e
→D

2

(x,y,z) through subsequent
rotation over

• pitch angle φ
D

3
1 along the y-axis;

• flatwise angle φ
D

3
2 along the z-axis;

• edgewise angle φ
D

3
3 along the x-axis.

Remember the bottom-up ranking ‘pitch-flat-
edge’ in the blade elements as mentioned in §2.1.

Note that the z-axis and x-axis for the flat- and
edgewise rotation belong to the

⇒ intermediate coordinate systems e
→D1

3

(x,y,z),

e
→D2

3

(x,y,z),

which are obtained by rotating e
→D

2

(x,y,z) and e
→D1

3

(x,y,z)
over the pitch angle and flatwise angle respec-
tively.

These considerations imply the following links be-
tween the orientation of the deformations and the
coordinate system axes along which the belonging
(scalar) differential equations are to be derived:

• co-axial angular and linear along e
→D

2
y

• flatwise angular and linear along e
→D1

3
z and

e
→D1

3
x ;



• edgewise angular and linear along e
→D2

3
x and

e
→D2

3
z ;

Now, we lump together the torque and force loads

in equation (25) to tD
⊖
3 and fD

⊖
3 . The differen-

tial equations for the dynamic behaviour related
to the angular and linear flatwise deformation
around the equilibrium is then obtained from the
following scalar equalities:
(

δ(D1
3ΦD

3 · (D
⊖
3 ḣ-

D
3 − tD

⊖
3 ))
)

z
=0 ⇔ δḣ

D
3

eqz =0
(

δ(D1
3ΦD

3 · (ṗD
3 − fD

⊖
3 )
)

x
=0 ⇔ δṗ

D
3

eqx =0

(1)
For the backward transformation matrix D1

3ΦD
3

holds (see also equation (23)):

D1
3ΦD

3 = ΦT
z (φ̄

D
3

2 ) · ΦT
x(φ̄

D
3

3 ) − ΦT
z (φ̄

D
3

2 )·

dΦT
x

dφ ((φ̄
D

3
3 ) · δφ

D
3

3 −
dΦT

z

dφ (φ̄
D

3
2 ) · ΦT

x(φ̄
D

3
3 ) · δφ

D
3

2

(2)
The belonging ‘flatwise’ differential equations are
obtained by linear expansion of the equalities in
equation (1). This yields second order differential
equations in variations ϕD and ̺D of the blade’s
DOF-vectors driven by variations vDp of the in-
put variables to the blade & profile submodel (use
short forms δḣ

D
3

eqz and δṗ
D

3
eqx and omit prefix δ):

∂ḣ
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∂
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∂ṗ
D

3
eqx

∂

�
ϕ

̺

�"ϕ
D

̺
D

#
=−

∂ṗ
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(3)

The expressions for the two other orientations are
obtained in the same way; replace the subscript-
pair {z, x} by {x, z} and by {y, y}. After these
equations have been stacked for the three orien-
tations in D3, and this has been done for all ele-
ments of Dp, the matrix/vector differential equa-
tion for Dp is obtained as a mass-damper-spring
formulaton:

M ·

[

ϕ̈
D

¨̺D

]

+ D ·

[

ϕ̇
D

˙̺D

]

+ S ·

[

ϕ
D

̺
D

]

= G · vDp (4)

It should be noted that those rows and columns
of the matrices M , D and S are to be removed
which pertain to the angular and linear orienta-
tions that are no DOF in the sense of submodel
Dp. Thus the first six columns will be removed,
since these pertain to the (potential) DOFs in sub-
model Df , and also those rows and columns are

removed that pertain to the co-axial linear orien-
tation of elements D2 up to DN . In input matrix
G only the removal of the corresponding rows ap-
plies.

After the columns and rows have been removed,
the mass-damper-spring formulation is a valid
model of the structural and quasi-steady aerody-
namic behaviour of the blade profile & structure
Dp.

The model equations for the output variables of
Dp are obtained by the linear expansion of the
output vector yDp in the DOFs and their first and
second derivatives and the submodel-input vari-
ables. After elimination of the dependency on the
second derivatives of the DOFS via the state equa-
tions, the following expression for yDp is obtained:

yDp = L ·

[

ϕ̇
D

˙̺D

]

+ H ·

[

ϕ
D

̺
D

]

+ K · vDp (5)

The same model derivation procedure applies for
the flange Df , although only one element applies,
viz D1.

Thus it is explained that for the structural sub-
models of Df and Dp

• the equations of motion appear as second or-
der differential equations in the DOFs (mass-
damper-formulation);

• the output equations map DOFs and their
1st and 2nd time-deriviatives, as well as the
submodel-input variables, to the submodel-
output variables.

The desired first order state space parametrisa-
tion can be easily derived from this formulation.
The new state variables are both the DOFs and
their 1st time-deriviatives.

The model equations (35) and (36) of the pitch
servo actuator (Dc for blade D) are transformed
into a state space parametrisation via a standard
MATLAB-function.

The equations of motion of the submodel for
the unsteady aerodynamic behaviour Da have
been formulated directly as (scalar) first order
state equations, combined with output equations
in §A.1.3. The output equations map for each
blade element the state variable and submodel-
input variables to the dynamic addition of the lift-
coefficient. The stacking of the state and output
equations and rewriting them as matrix-vector
products yields the desired first order state space
representation.

When the four submodels of the rotor blade D
are connected to each other via the interaction



variables according to figure 2, the desired first
order state space representation for D is obtained:

d
dt(zD) = A

D · zD + B
D · vD

yD = C
D · zD + K

D · vD

4.1.2 State space model & submodels
drive-train

The two submodels of the drive-train, those of
the generator rotor Rf and of the rotor shaft &
hub Rr, pertain both to the structural dynamic
behaviour.

The desired first order state space representations
are obtained from the ‘mass-spring-damper’ for-
mulations in the same way as described for the
blade flange and profile & structure.

When the two submodels of the drive-train R are
connected to each other via the interaction vari-
ables according to figure 3, the desired first order
state space representation for R is obtained:

d
dt(zR) = A

R · zR + B
R · vR

yR = C
R · zR + K

R · vR

4.1.3 State space model & submodels sup-
port structure

The four submodels of the support structure,
those of the gearbox house Rh, the nacelle Sn,
the tower St and the foundation Sf , all pertain to
the structural dynamic behaviour.

The desired first order state space representations
are obtained from the ‘mass-spring-damper’ for-
mulations in the same way as described for the
blade flange and profile & structure.

When the four submodels of the support structure
S are connected to each other via the interaction
variables according to figure 4, the desired first
order state space representation for S is obtained:

d
dt(zS) = A

S · zS + B
S · vS

yS = C
S · zS + K

S · vS

4.1.4 State space model wake behaviour

The equations of motion of the ‘component’ model
for the dynamic wake behaviour W have been for-
mulated directly as (scalar) first order state equa-
tions. The induction speed variations per annu-
lus are the state variables. The desired first order
parametrisation is obtained from the stacking of

the scalar state equations and specifying the iden-
tity matrix for the output matrix and null matrix
for the feedthrough matrix. It is formulated by:

d
dt(zW ) = A

W · zW + B
W · vW

yW = C
W · zW + K

W · vW

4.2 Merging the component models

The first order state space representation allows
to automate the connection of the blade and
flange model via the interaction input/ouput-
relationships; the connection requires lists of in-
dex pairs in the input and output vectors. A high
rate of genericity is achieved because signal name
lists exist for the output and input vectors; each
signal name involves the identifier for the desti-
nation or source (sub)component. This enables
to define the required lists of index pairs from
searches on identical signal names in the input
and output name lists.

According to the previous section, the modu-
larised linear modelling approach yields state
space models for the 3 rotor blades (D, E and
F ), for the dynamic wake behaviour (W ), for the
drive train (R) and for the support structure (S).
Figure 5 shows the matrix equations for the state
space representations of the component models
and the interaction signals as well as the exoge-
neous input signals from the wind and the waves.
The interface between the drive-train and support
structure involves the rotor azimut angle, which
amounts to Ω̄t in the sense of ‘on-average evolu-
tion’.

The interface between each rotor blade and the air
tube (‘wake’) does not include a rotation. The ori-
entation of the axial and tangential reaction forces
from a blade on the air turbe coincides with the
axial and tangential orientation of the air tube in
the intersection with that blade. The rotor blades
receives the annulus-average axial and tangential
induction speed variations.

In general, the equations of motion for the inte-
grated model will have coefficients that are peri-
odic in Ω̄t:

ż = A(Ω̄t) · z + B(Ω̄t) · v

y = C(Ω̄t) · z + K(Ω̄t) · v
(6)

This makes them not suitable for well-known so-
lution procedures for systems of ordinary first or-
der differential equations. Because of the polar
symmetry of rotors with three or more identi-
cal blades a simple transformation – the so-called
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Figure 5: Interdependency of state space models
for the distinct substructures of the wind turbine

multi-blade transformation, see Coleman & Fein-
gold [21]– can eliminate the periodic coefficients
in the full system equations. This transformation
is also carried through by Hansen [25] and McCoy
[5].

The only price to be payed for it consists in mod-
ulation of the wind speed variations before they
enter the transformed system equations via input
vector ǫ and in modulation of the transformed sys-
tem output variables in η in order to retransform
them along the desired coordinate systems. The
following linear time invariant model formulation
with modulated input preprocessing and output
postprocessing then applies:

ǫ = T−1
vcm(Ω̄t) · v

q̇ = Acm · q + Bcm · ǫ

η = Ccm · q + Kcm · ǫ

y = Tycm(Ω̄t) · η

(7)

The invariant input, state transition, output and
feedthrough matrix in this model is obtained from
the corresponding periodic matrices in the ear-
lier mentioned model via the Coleman transfor-
mation matrices Tzcm(Ω̄t), Tvcm(Ω̄t) and Tycm(Ω̄t)
on the state, input and output vector respectively,

by performing the transformation for an arbitrary
fixed value of the rotor azimut angle Ω̄t. The
fixed-frame system matrices are obtained as fol-
lows from the (partially) rotating system matri-
ces:

Acm = T−1
zcm(ψ̄) ·

(

A(ψ̄) · Tzcm(ψ̄) − Ṫzcm(ψ̄)
)

Bcm = T−1
zcm(ψ̄) · B(ψ̄) · Tvcm(ψ̄)

Ccm = T−1
ycm(ψ̄) · C(ψ̄) · Tzcm(ψ̄)

Kcm = T−1
ycm(ψ̄) · K(ψ̄) · Tvcm(ψ̄)

(8)

The Coleman transformation involves the map-
ping of any corresponding quantities on the rotor
blades D, E and F to multi-blade coordinates via
the 3 × 3 matrix kernel TkerX :

TkerX(Ω̄t) =







1 sin(Ω̄t) cos(Ω̄t)

1 sin(Ω̄t+ 2
3π) cos(Ω̄t+ 2

3π)

1 sin(Ω̄t+ 4
3π) cos(Ω̄t+ 4

3π)






.

(9)
It also involves the mapping of x, y and z-
coordinates of any vector on the rotor shaft to
multi-blade coordinates via the 3 × 3 matrix ker-
nel TkerR :

TkerR(Ω̄t) =







1 0 0

0 cos(Ω̄t) sin(Ω̄t)

0 − sin(Ω̄t) cos(Ω̄t)






.

(10)
All input and output variables as well as all
state variables are accompanied by unique signal
names. Each signal name involves the identifier
for the destination, source or possessing compo-
nent for an output, input or state variable respec-
tively. This enables to create in an automated
way the appropriate matrix kernels on the right
locations in the Coleman transformation matri-
ces for each set of 3 blade variables, each rotor
shaft vector variable and each support structure
variable.

It should be noted that periodic coefficients due
to external forces (gravity and uniform wind load-
ing) are not eliminated by the Coleman transfor-
mation. The parametric excitations terms due to
gravity and wind loads can generally be ignored
for all but extremely flexible blades.

4.2.1 Reduction of the model order

The submodels of the blade profile & structureDp

and of the tower St can be reduced in order. For
this we apply the method proposed by Hurty [22],
[23], which has been made more easily applicable
by Craig & Bampton [24].



The implemented method allows to significantly
reduce the degrees of freedom in the blade and
tower model without loss of accuracy in the dy-
namic behaviour of the lower bending modes; the
number of modes to be included can be specified.
Typically, the order of the integrated model can
be reduced from 600 to 100 without any loss of
accuracy in frequencies up to 5 Hz or even higher.
This enormously accelerates the dynamic analy-
sis.

The implementation was not so straightforward
because of the applied submodel connection mech-
anism.

When submodels are connected in accordance
with the schemes proposed by Hurty and Craig &
Bampton, the ’inner’ boundary dofs vanish from
the overall set of equations of motions during the
very coupling. These inner boundary dofs must be
present in the reduced order model so that they
can vanish when the coupling is performed.

In TURBU, the connection to a ‘more inner’ sub-
component model is established by ‘importing
acceleration and speed variables’ and ‘exporting
force and torque variables’. This allows for not
including the ‘inner’ boundary dofs in the reduced
order submodel. The reason for this is the follow-
ing:

⇒ The imported kinematic variables at the sub-
component entry point always provide the full
rigid body motion of the subcomponent of
which the reduced order model is derived.

The exit point of the rotor blade profile submodel
Dp is NOT connected to another submodel. This
allows for leaving out all boundary DOFs from
the reduced order submodel. However, the exit
point of the tower subcomponent is connected to
the nacelle subcomponent. Therefor the bound-
ary dofs at the tower exit point are to be included
in the reduced order model.

TURBU allows for switching on or off the flexibil-
ity of deformation orientations such as edgewise
blade bending. It appeared that the model re-
duction procedure works well for all choices of de-
formability. The correspondence of the transfer
functions before and after model reduction was
pointed out to be decisive. This correspondence
is a hard requirement, but necessary when the re-
duced order model is used for control design.

Equal transfer function behaviour implicitely
guarantees equal eigenvalues. The correspon-
dence of transfer functions required to include
the quasi steady behaviour of the high-frequency
modes in the subcomponent models Dp and St.

5 Control design

The state space model in fixed-frame coodinates
by equation (7) is very feasible for control de-
sign. The three transformed pitch angles in the
fixed frame represent actuation of (i) the aero-
dynamic torque and thrust force, (ii) the aerody-
namic tilt moment, and (iii) the aerodynamic yaw
moment. This also holds for corresponding trans-
formed wind speed varations on the three rotor
blades.

First, the servo behaviour of the pitch actuator is
examined. Afterwards, the synthesis of different
feedback structures is treated. Finally, closed loop
transfer functions for the fixed-frame model are
presented.

5.1 Pitch servo behaviour

Figure 6 shows the servo behaviour of pitch actu-
ation with a collective and with a yaw orientation.
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Figure 6: Servo behaviour for collective (left) and
yaw-oriented pitch actuation (right; tilt equal); am-
plitude ratio’s between ‘pitch angle output’ and ‘pitch
angle reference’ values (upper); phase lead angles of
output relative to reference values (lower)

The collective servo behaviour looks as expected:
unit low-frequency gain and minor overshoot in
the cut-off frequency of near 1Hz. However, the
yaw-oriented servo behaviour differs. The steady-
state gain (0-frequency) of 1.1 can be explained
from the yaw orientation: the 0-frequency yaw-
servo gain corresponds with the (collective-)servo
gain in the 1p-frequency in the rotating frame of
reference, viz. the ‘rotating world in which the
pitch servo actuator works’. The collective-servo
gain near 0.3 Hz shows an amplitude ratio of 1.1,



which agrees with the quasi-steady yaw-servo gain
of 1.1.

5.2 Feedback structures

Feedback structures were synthesized for a 3-
bladed variable speed pitch controlled 3MW hor-
izontal axis wind turbine. The control concepts
that were realised with the feedback structures
are:

• rotor speed reguluation by collective pitch;
• drive-train damping by generator torque;
• fore-aft tower damping by collective pitch;
• sidward tower damping by generator torque;
• 1p blade load reduction by cyclic pitch.

Lately, different approaches have been developed
to provide applicable feedback structures. Ap-
proaches to basic speed regulation can be found
in [11] and [26]. For fore-aft tower damping and
drive-train damping is referred to [11] and [27].
Methods for the design of a blade load reduction
algorithm by cyclic pitch control can be found in
[28] and [29]. For basics on control theory see [30].

The synthesis procedure applied here is described
in [31], except the drive-train damping is realised
in accordance with the approach as proposed by
Bossanyi in [11], in which the band-pass filter gen-
erator speed is fed back to the generator torque.
The rotor speed regulation is based on scheduled
PI-feedback from the rotor speed to the collective
pitch angle angle setpoint.

The remaining feedback structures are the follow-
ing:

• P-feedback of the band-pass filtered fore-aft
tower top speed to the collective pitch angle
setpoint for fore-aft tower damping;

• P-feedback of the band-pass filtered sideward
tower top speed to the generator torque for
sideward tower damping.

• I-feedback of the low- and band-pass filtered
tilt and yaw component of the fixed-frame
blade root moment coordinates to the tilt and
yaw components of the fixed-frame pitch an-
gle setpoints for 1p blade load reduction;

The second and third (fixed-frame) coordinate of
the blade root moment output variables in the
model formulation by equation (7) are propor-
tional to the aerodynamic tilt and yaw torque.
The regulation of the tilt and yaw torque corre-
sponds with the reduction of the blade flap mo-
ments around the 1p-frequency. An important

point of view is the approximate orthogonality of
pitch control for the (i) aerodynamic torque and
thrust, (ii) rotor yaw moment and (iii) rotor tilt
moment.

The parameters for regulation of the yaw and tilt
moment and of the rotor speed were determined
by applying phase and gain margin constraints to
the following design equations:

(Jr + Jg) · Ωgen(t) = 3 · kMx
· θcm1

(t− τvp
)

Mcm2(t) = kMz
· θcm2

(t− τvp
)

Mcm3
(t) = kMz

· θcm3
(t− τvp

)

(11)
The parameters kMx

and kMz
map a blade-specific

pitch angle variation to a variation in the leadwise
and flapwise blade root moment. These parame-
ters are derived from power and thrust coefficient
tables under the assumption of equal aerodynamic
efficiency over the rotor radius. The inertia mo-
ments Jr and Jg pertain to the rotor and gen-
erator. The pitch-delay τvp

is chosen such that
it causes a phase delay that equals the expected
phase delay from data processing and cyclic blade
pitching; τvp

was set to 0.14 s.

The parameters for damping enhancement of the
tower and drive-train were derived from a desired
damping rate associated with the design equa-
tions. The following design equations are allowed
when suitable band pass filters are included:

(
Jr·Jg

Jr+Jg
·

d2

dt2
+ dsh ·

d
dt

+ ssh)(γ(t)) = Jr
Jr+Jg

· δTg(t−τvg )

(mt ·
d2

dt2
+ dt ·

d
dt

+ st)(xsd(t)) = 3
2H

· δTg(t−τvg )

(mt ·
d2

dt2
+ d∗

t ·

d
dt

+ st)(xfa(t)) = 3kFx · θcm1(t−τvp)

with d∗

t = dt + 3hFx −

81Rb

32H2 · hMz

(12)

The parameters ssh and dsh, together with the in-
ertia moment Jr · Jg/(Jr + Jg), model the behav-
iour of the first collective leadlag rotor/drive-train
mode. The torque-delay τvp

amounts to 0.045 sec-
onds, an estimation for the data processing time
and transient behaviour of the generator torque
servo.

The parameters kFx
and hFx

map a blade-specific
pitch angle and blade-uniform wind speed varia-
tion to a variation in the axial force on the blade
root. The parameters mt, dt and st model the
translation behaviour of the first bending mode of
the tower, which is assumed to be equal in foreaft
and sideward direction. The effect on the fore-aft



translation by the tilt rotation of the tower top is
modelled via the coefficient −81Rb/(32H2), with
Rb and H the rotor radius and tower height. The
associated term in the fore-aft bending equation
represents a force that is derived from the esti-
mated tilt moment caused by the tilt rotation.

The choice of filters is crucial in order to allow for
the ‘scalar’ classic PID-approach. The band-pass
filters are designed such that the phase shift of
filter and loop delay together amounts to zero in
the respective natural frequencies.

5.3 Closed loop transfer functions

Figure 7 shows the sensitivity of the rotor speed
and tower bottom fore-aft moment to wind speed
variations with a collective and tilt-wise orienta-
tion. The dashed blue lines represent the open
loop behaviour while the solid red lines appear
when the basic controller is linked to the wind
turbine. It can be observed that the rotor speed
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Figure 7: Sensitivity of rotor speed (upper) and tower
bottom fore-aft moment (lower) to collective (left) and
tilt-oriented (right) wind speed variations of the wind
turbine without (blue dash) and with (red solid) basic
control

variations from the turbulence are reduced by the
controller in frequencies up to 0.08 Hz. This also
holds, in less sense, for the fore-aft moment. How-
ever, between 0.1 and 0.4 Hz the closed loop be-
haviour is slightly worse than the open loop be-
haviour. Since the ‘energy’ of the turbulence is
largely concentrated in frequencies below 0.1 Hz,
the overall behaviour is (of course) expected to be
improved, especially as concerns the rotor speed
behaviour.

It is also clear from Figure 7 that the drive-train

vibrations are significantly reduced: the peak in
the amplitude ratio just below 2 Hz is reduced by
a factor 10 approximately.

The closed loop configuration with cyclic pitch
and basic control included was extended with the
add-ons for fore-aft and sideward tower damping.
This yielded the overall closed loop model in 18
m/s.

Figure 8 shows the sensitivity of the rotor speed
and tower bottom fore-aft moment to wind speed
variations with a collective and tilt-wise orienta-
tion.
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Figure 8: Sensitivity of rotor speed (upper) and tower
bottom fore-aft moment (lower) to collective (left) and
tilt-oriented (right) wind speed variations in case of
basic control (blue dash) and with add-on for fore-aft
tower damping from collective pitch (red solid)

The dahsed blue lines represent the behaviour
with the basic controller while the solid red [black]
lines appear when collective pitch control for en-
hanced fore-aft damping is added. The solid cyan
[grey] lines pertain to the ‘fore-aft damping add-
on’ with other parameters:

• the ‘red’ [black] enhanced fore-aft damping
behaviour is achieved with a filter with with
a pass band between 25% and 400% of the
natural first tower fore-aft frequency;

• the ‘cyan’ [grey] enhanced fore-aft damping
behaviour is achieved with a filter with with
a pass band between 50% and 200% of the
natural first tower fore-aft frequency.

It appears that the wide ‘25% - 400%’ filter yields
both a more wide and a less high peak while the
moderate ‘50% - 200%’ filter yields a more narrow
but less high peak. Since the more narrow peak



for the moderate filter is lower than the original
wider peak the use of the moderate filter is yet
expected to effectively reduce the fore-aft loading.
In simple analysis on ‘second order dynamics’ the
occurrence of more narrow and yet lower peak is
not expected. However, a full dynamic model al-
lows for this paradoxal property; it follows from
the interaction of deformation modes.

Analysis with doubled feedback gain showed less
damping enhancement but still stable closed loop
behaviour.

Figure 9 shows the sensitivity of the rotor speed
and tower bottom sideward moment to wind
speed variations with a collective and yaw-wise
orientation.
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Figure 9: Sensitivity of rotor speed (upper) and tower
bottom sideward moment (lower) to collective (left)
and yaw-oriented (right) wind speed variations in case
of basic control (blue dash) and with all add-ons in-
cluded (red solid)

The dashed blue lines represent the behaviour
with the basic controller while the solid red lines
appear when generator torque control for en-
hanced sideward damping is added. The applied
pass band ranges from 50% to 200% of the first
natural sideward tower frequency.

The sensitivity of the tilt and yaw moment to
tilt- and yaw-oriented wind speed variations is de-
picted in Figure 10.

The dashed blue [black] lines represent the be-
haviour with basic control only, while the solid
red [black] lines pertain to the behaviour with
cyclic pitch control included. The gains in the yaw
and tilt moment feedback loops were reduced to
50% of the allowed values. Analysis with doubled
feedback gains, the actual design values, showed
steeper decay of the amplitde ratios frequency be-
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Figure 10: Sensitivity of tilt moment (upper) and yaw
moment (lower) in the rotor centre to tilt- (left) and
and yaw-oriented (right) wind speed variations in case
of basic control (blue dash) and with all add-ons in-
cluded (red)

low 0.1 Hz but the disturbance amplification, in-
stead of desired reduction, strongly increases be-
yond ca 0.1 Hz. This would lead to a strong en-
largment of the turbulence induced loads in fre-
quency just below 1p - 0.1Hz and just aboe 1p +
0.1Hz. Instable closed loop behaviour is observed
at 4.5 times the applied feedback gains.

6 Time domain simulation

Time domain simulations were performed with
the aeroelastic simulation code PHATAS [16] in
18 m/s at 17% turbulence with an exponential
shear coefficient of 0.20. The wind field was ob-
tained with the ECN program SWIFT [32], [33].
All feedback structures that were analysed in the
previous section were linked to PHATAS via a DLL
derived from a MATLAB-implementation via the
MATLAB-C-compiler.

Figure 11 shows the auto power spectra of
the tower-bottom fore-aft moment, tower-bottom
sideward moment, blade root flap moment and tilt
moment in the rotor centre in four boxes. Each
box contains the power spectrum for the case of
basic control (null) only, and for the case with all
feedback structures included.

The merits of the feedback strcutures for load re-
duction are clearly observable from the reduced
spectral peaks

• in and around the tower natural frequency
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Figure 11: Power spectrum of bottom fore-aft mo-
ment (upper left), bottom sideward moment (upper
right), blade root flap moment (lower left) and tilt
moment (lower right) for basic controller (dash) and
extension with all add-ons in 18m/s (solid)

for the tower bottom moments;

• in and around the 1p-frequency for the blade
root moment

Only (very) low frequent reduction is observed for
the tilt (and yaw) moment. Note that the average
tilt and yaw loading are almost nihilated; this is
not observable in figure 11 because the average
values were not included in the power spectra.

Within the STABCON project, statistical repre-
sentative simulations were performed for different
turbulence levels, mean wind speeds and exponen-
tial shear factors. Design guidelines for aeroelas-
tic control were deduced from the results and are
being published [35]. The potential of the load re-
ducing controllers has been derived from the ‘1p-
equivalent fatigue loads’. The controller from this
paper showed a typical reduction potential of

• 10% to 30% for the rotor blade fatigue load-
ing

• 4% to 6% for the tower fatigue loading.

Under extreme turbulent or shear conditions the
reduction levels deviate from these values. In
stronger shear conditions the potential increases,
while it decreases at stronger turbulence. It is ex-
pected that more sophisticated control methods
will result in higher reduction levels. Especially,
the reduction of (i) low-frequent tower and blade
loads, in the time-scale of rotor uniform turbu-
lence and (ii) blade loads around 2p, and thus
tilt- and yaw-loading around 3p, still offers large

possibilities for reduction of the component costs.
Scoping results of the latter option were already
reported in [29]. Distributed blade actuation such
as variable trailing edge geometry may play an im-
portant role in further load reduction by control.

7 Conclusion

The ECN computer code TURBU generates an in-
tegrated linearised aerohydro-elastic model with
control, wave and wind inputs for 3-bladed wind
turbines. It also calculates the equilibrium state.
As a matter of fact TURBU extends a regular ad-
vanced linear aeroelastic stability tool with the
capability to transfer function analysis and linear
time-domain simulation in both open and closed
loop conditions.

Closed loop transfer function analysis with
TURBU proves that feedback loops for enhanced
sideward and fore-aft tower damping and reduced
blade loads around 1p can be derived well from
simple design equations. Only some filters related
to collective pitch control had to be retuned.

The validity of closed loop transfer function pre-
dictions has been proved in non-linear aeroelas-
tic time-domain simulations. These simulations
showed significant load reduction and good closed
loop stabilty. The fatigue loads in full load oper-
ation were reduced by 10% to 30% for the rotor
blades and 4% to 6% for the tower. The rate
of achievable blade load reduction around 1p de-
pends on the ratio between shear and turbulence
influences. The larger the shear influence, the
higher the achievable reduction level is. Further
significant load reduction is expected from distrib-
uted blade actuation, both in the very low fre-
quency range and in the frequency range around
2p.

A TURBU model includes bending and torsion de-
formation of the tower and rotor blades, shear
centre offset, (unsteady) aerodynamic conversion,
wake dynamics, pitch servo dynamics and hydro-
dynamic conversion. The linearisation is centered
around average conditions that include prebend
and twist of the rotor blades, average deforma-
tion and average induction (BEM).

The inclusion of model reduction schemes for the
blade and tower submodels makes TURBU com-
putationally very efficient. Its modular struc-
ture facilitates convenient implementation of ex-
tensions in future. These may e.g. pertain to
distributed blade actuation, like variable trailing
edge geometry as scoped by Buhl e.a. [34], or to
include a second pitch actuator in the mid-span



location of the rotor blades. The modular struc-
ture also allows to use a separately derived model
for a deviating support structure, such as a lattice
tower or even a floating platform.

TURBU is programmed in the MATLAB program-
ming language [4] and is available for use by third
parties. The program input agrees with that re-
quired by non-linear aeroelastic time domain sim-
ulation codes like PHATAS. The only deviation
concerns 3D-correction of the lift polars, which
has to be performed beforehand.

On a 1.6 GHz Pentium Mobile processor:

• the creation of an integrated dynamic model
including equilibrium assessment for one
working point amounts to 12 s;

• model reduction reduces the computation
time for bode diagrams from tens of seconds
to fractions of a second.
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A Model equations

This appendix aims at providing a complete ex-
plantion of the underlying model equations that
are used in the component models. The four
sections address the model equations for the ro-
tor blades, drive-train, support structure and the
wake.



A.1 Rotor blade equations

A.1.1 Flange Df and profile & structure Dp

The structural dynamic behaviour of the ro-
tor blade is modelled under the assumption of
massless elastic beam elements and concentrated
point masses to which moments of inertia are at-
tributed. In figure 12 five of such beam elements
of length S are distinguished.
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Figure 12: Structural blade model

Consider the bending deformation at the end of a
beam element from concentrated force and torque
loads f and t along unit vectors eD0

z and eD0
x in

that location for invariant stiffness EI over an el-
ement (beam bending equivalence). Exactly the
same deformation is obtained with a concentrated
angular and linear spring in the mid-span location
with stiffness EI/S and 12EI/S2 respectively.
In our model, the massless elastic beams are re-
placed by these springs and rigid bars. The ef-
fective bending stiffness EI is based on the main-
tenance of similar rotation per moment charac-
teristics (the bending moment is assumed almost
constant along the beam element). It then holds

EI = S / (
∫ se
s0

s
EI(s) · ds ) (13)

Two orthogonal bending spring pairs are located
in the mid-span location of each of the five beam
elements in order two model blade bending in two

directions. Also, springs are added for the tor-
sional deformation.

As so far, the Holzer-Myklestad method as de-
scribed by Bielawa in [9] is followed, except a
slight reallocation of mass and the added torsion
springs. Figure 12 shows that the rotor blade
model consists of the 5 elements D2 . . . D6 that
set up the blade profile & structure Dp and an ad-
ditional element D1 that is used for for the flange
Df . The flange element D1 transduces the rigid
body motion from the end of the blade root to
the entry point of the first blade profile & struc-
ture elementD2. The flange elementD1 allows for
motion relative to the blade root, via pitching and
flap and leadwise hinges. For the sake of equally
structured equations of motions for all elements,
the blade mass beteen 0 and 1

2S of the blade span
Sb is allocated to D1. The inertia properties of
elements S2 . . . S5 and S6 are derived from in-
tegrals over span intervals { 1

2S,
3
2S} . . . {

7
2S,

9
2S}

and { 9
2S, Sb}.

Note that the mid-span locations of the model ele-
ments D2 . . . D5 correspond with the end points of
the first four beam elements according to Holzer &
Myklestad. In order to maintain as much as pos-
sible the principle of ‘beam bending equivalence’,
the spanwise distributed aerodynamic loads are
mapped to concentrated loads in:

• mid-span locations of elements D2 . . . D5;
• end point of element D6;
• entry point of element D1.

The mapping procedure is based on equal defor-
mation in the end points of massless elastic beam
elements, just as mentioned above for the dimen-
sioning of the springs.

Before the model equations can be derived, the
structural model is cast into a co-rotational for-
mulation in such a way that the angular bending
springs are located on the elastic axis. An ex-
ception concerns element D1 and those that are
preceeded by elements for which explictely out of
plane and in-plane configuration angles are de-
fined (coning angle(s), δ3-angle(s)). In D1 the lo-
cation of angular springs coincides with the pitch
axis while in the latter elements the location of
these springs follows from the configuration an-
gles. This allows for coning, flap and leadwise
skewness, prebend and the inclusion of the aver-
aged deformed state in the equations of motion.

Figure 13 shows in the upper part the configura-
tion of model element D3 via the spanwise elastic
(y-)axis and the neutral bending axes for edge and
flatwise bending (x- and z-axis). The edge- and
flatwise orientation are obtained by ‘nose-up’ ro-



tation over the structural pitch angle relative to
the in-plane and out of plane orientation (lead-
and flapwise). The local coordinate system eD3

1,2,3

coincides with the ‘elastic’ x-, y- and z-axis of D3

and is used for the formulation of the equations
of motion in the entry point D⊖

3 .

c

eD(3)

2
3 = elastic axis in D3

entry pointD (-)
3

exit pointD (+)
3

leadwise offset OffElasLead in D (-)
3

leadwise offset OffElasLead in D (+)
3

flapwise offset OffElasFlap in D (-)
3

flapwise offset OffElasFlap in D (+)
3

D3eD(3)

1
3(flat)

eD(3)

3
3 (edge)

c

elastic axis

1/4c

aerodynamic centre    
with concentrated

force and torque loads

D a
3

flatwise offset 
OffAeroFlat (<0)

edgewise offset
OffAeroEdge(>0)

shear axis

centre of 
gravityaxis

mid-span cross-section with D a
3cross-section with entry D (-)

3

c

elastic centre in    
with angular

bending springs

D (-)
3

1/4c

centre of 
gravityaxis

edgewise offset
OffShrEdge(>0)

flatwise offset 
OffShrFlat (>0)

rES aerodynamic
axis

shear centre with
linear bendingsprings

& angular torsion spring

eD(3)

1
3(flat)

eD(3)

3
3 (edge)

elastic axis

c

elastic axis

1/4c

centre of gravity    
with concentrated mass

and inertia moment tensor

D *
3

shear centre

flatwise offset 
OffCogFlat (<0)

edgewise offset 
OffCogEdge (<0)

aerodynamic axis

cross-section with c.o.g. D *
3

D (-)
4 =

=D (-)
4

structural
 pitch angle

chord line

aerodynamic
 pitch angle

rotor plane

blade axis

radial axis

Figure 13: Configuration and center points of 3rd

blade model element

The lower part of the figure shows (i) the shear
centre in the cross section with the entry point
D⊖

3 , (ii) the mid-span cross section with the aero-
dynamic conversion point Da

3 for the concentrated
aerodynamic force and torque loads and (iii) the
cross section in which the centre of gravitiy D∗

3

is located. The chord line is ‘nose-up positive’ ro-
tated over the aerodynamic pitch angle relative to
the in-plane orientation. The effect on deforma-
tion through the shear axis offset from the elastic
axis is modelled as follows: the linear bending
springs and the torsion spring are moved to the
shear centre over place vector rES while the angu-
lar bending springs remain located in the elastic
centre. Elements D2 . . . D6 are all treated in the
same way.

The equations of motion for the blade elements
are derived by Newton’s law related to the rate of
change in the linear impulse and in the angular
impulse relative to the entry point of each ele-
ment. Figure 14 shows the relevant load, place
and impulse vectors for the blade flange element
D1 and the profile & structure element D3.

The coordinate system independent vector ex-
pressions for the equations of motion of element
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Figure 14: Equation of motion governing vector vari-
ables for 1st and 3rd blade model element
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at
→Da

3 + D
⊖
3 r
→Da

3
×

af
→Da

3 + D
⊖
3 r
→D∗

3
×

gf
→D∗

3

~̇p
D

3 = RSf
→D

⊖
3 + D

4f
→D

⊕
3 + af

→Da
3 + gf

→D∗
3

(14)

The responsive loads RSt
→D

⊖
3 and RSf

→D
⊖
3 are visco-

elastic loads; in the blade flange, the torque com-
ponent along the y-axis usually results from the
pitch actuator.

What is referred to as the rate of change of angu-
lar impulse actually is the biased angular impulse
(h- is used instead of h), which excludes the term
that is set up by the linear acceleration of the
reference point D⊖

3 . The summed biased angular
impulse change relative to D⊖

3 equals the torque
load in D⊖

3 (see discussion in §5.1.3 of [19]). For
the angular and linear impulse of the element D3



holds (no coordinate system reference):

D
⊖
3 ~̇h-

D
3

= D
⊖
3 r
→D∗

3
× ~̇p

D
3 + I

D
3 • α

→D
3 + ω

→D
3

× I
D

3 • ω
→D

3

~̇p
D

3 =mD
3a
→D∗

3

(15)
In this expression is I the central inertia dyadic
as defined by Kane and Levinson [10]. When the
equation is expressed as a normal vector differ-
ential equation in coordinates along a (local) co-
ordinate system, then I gets the meaning of the
so called inertia tensor, a 3 × 3-matrix with the
principal moments of inertia on the diagonal.

The structural velocity and acceleration con-
tribute to both the impulse and the load vec-
tors in equation (14). These kinematic variables
are expressed in coordinates along the local co-
ordinate systems of the elements, such as e

→D
3

(x,y,z)

and e
→D

1

(x,y,z) in figure 14, in accordance with the

method proposed by Kane and Levinson [10].

Before we continue with the treatment of the kine-
matic variables, it is clarified how the DOFs are
included in the model description. A complete
treatment of the DOFs is given in App. B of [20].

Degrees of freedom (DOFs)
The angular and linear DOFs are modelled as in-
cremental rotations φ

Dm

(1,2,3) and translations ρD

(1,2)

in the entry point of an element Dm (axial trans-
lation not taken into account). The bottom-up
ranking of the rotations in the flange element is
flap-pitch-edge, so alng the local z-,y- and x-axis;
and in the blade structure elements pitch-flat-edge,
so along the local y-,z- and x-axis. The corre-
sponding bottom-up ranked translations are along
the x-, z-axis and z-, x-axis respectively.

The rotation ranking is chosen such that blade
coning and δ3 setting can be configured via the
average values φ̄

D
1

1 and φ̄
D

1
3 ; the average pitch an-

gle is carried through via −φ̄
D

1
2 . Further, prebend

and average blade bending are carried through via
average rotations φ̄

D
2...N

2 and φ̄
D

2...N

3 while struc-
tural pitch and average blade torsion appear via
φ̄

D
2...N

2 .

The angular DOFs on an element make the orien-
tation of the coordinate system on that element
differ from that on the foregoing element. The
place vectors as depicted in figure 14 have invari-
ant coordinates along the local coordinate sys-
tems.

Kinematics rotor blades
In order to facilitate the modular and linear ap-
proach of TURBU, in which the average deforma-
tion state is taken into account, a kinematic vari-
able of an element is expressed:

• as a function of (i) the DOFs within the sub-
component of that element and (ii) the kine-
matic variables at the end of the foregoing
subcomponent; the blade flange is foregoing
to the blade profile&structure, the rotor shaft
& hub is foregoing to the blade flange, etc.

• as a function with linear dependency on the
variations of the DOFs and foregoing kine-
matic variables, in which the average values
of the DOFS and the average rotor speed Ω̄
act as parameters of that function.

For example, the translation (=linear) velocity

v
→Da

3 of the aerodynamic conversion point Da
3 is

expressed in the linear and angular velocity at the
exit point of the flange (D⊕

1 ) and the angular and
linear DOFs in the entry points of elements D2

and D3. The coordinates of v
→Da

3 along e
→D

k are
obtained by:

vDa
3 = v̄Da

3 +
∂vDa

3

∂v
D

⊕
FF

· δvD
⊕
FF +

∂vDa
3

∂ω
D

⊕
FF

· δωD
⊕
FF+

∂vDa
3

∂φD · δφD +
∂vDa

3

∂ϕ̇D · ϕ̇D +
∂vDa

3

∂ ˙̺D
· ˙̺D

(16)
For the average velocity v̄Da

3 holds:

v̄Da
3 = D

3Φ̄D
1 · v̄D

⊕
1 +

(

3
∑

m=2

D
3Φ̄Dm · J3

v=1(
DmΦ̄

D
1

v ×
D

⊖
mr

D
⊕|a

m|3)) · ω̄D
1

(17)
The coordinates of the average velocity vector
v̄D

⊕
1 at the flange-exit are mapped from the

flange’s coordinate system to that of element D3

via D
3Φ̄D

1 . This mapping includes the transfor-
mation over the average angular DOF-values of
elements D2 and D3:

D
3Φ̄D

1 = D
3Φ̄D

2 · D
2Φ̄D

1 , with (m = 2, 3):

DmΦ̄D
m−1 = Φx(φ̄

Dm

3 ) · Φz(φ̄
Dm

2 ) · Φy(φ̄
Dm

1 )
(18)

For the incremental transformation matrix Φz(φ̄)
holds (similar for Φx(φ̄) and Φy(φ̄)):

Φz(φ̄) =

(

cos φ̄ sin φ̄ 0

− sin φ̄ cos φ̄ 0

0 0 1

)

(19)

The place vector D
⊖
mr
→D

⊕|a

m|3 runs to the exit point if
m < 3 and to the aerodynamic conversion point
if m = 3.

The expression J3
v=1(.) implies that the results of

the 3 vector products are put next to each other
from left to right for v = 1, 2, 3.



For the sensitivity functions ∂vDa
3/∂vD

⊕
FF and

∂vDa
3/∂ωD

⊕
FF holds:

∂vD∗
3

∂v
D

⊕
FF

= D
3Φ̄D

1

∂vD∗
3

∂ωD
FF

=

3
∑

m=2

D
3Φ̄Dm · J3

v=1(
DmΦ̄

D
1

v ×
D

⊖
mr

D
⊕|a

m|3)

(20)
In order to be able to use a generic scheme for
the derivation of the equations of motion, the
sensitivity formulations to the DOFs in the sub-
component Dp pertain to complete DOF-vectors
φD and ρD in the blade component D, with also
translations in all three directions. That’s why
the expressions below include 3× 3 zero-matrices
Om for the DOFs on the mth blade element
(m = 1, 4, 5, 6):

∂vDa
3

∂ϕ̇D = [O1 J3
i=2(

3
∑

m=i

D
k Φ̄Dm · J3

v=1(

DmΦ̄D
i · D

iΦ̄
D

ιr
i

v ×
D

⊖
mr

D
⊕|a

m|3)) O4 . . .ON ]

∂vDa
3

∂ ˙̺D
=
[

O1 J3
i=2(

D
3Φ̄D

i · D
iΦ̄D

ιt
i ) O4 . . .ON

]

(21)
The sensitivity ∂vDa

3/∂φD accounts for the orien-
tation variation of the local coordinate system on
D3 relative to the flange.

∂vDa
3

∂φD =

[

O1 Jki=2(J3
v=1(

∂D
3ΦD

1

∂φ
D

i
v

v̄D
⊕
1 +

∂D
3ΦD

1

∂φ
D

i
v

ω̄D
1×

D
⊕
0 r̄Da

3 + ω̄D
3×

i−1
∑

m=2

∂D
3ΦDm

∂φ
D

1
v

· D
⊖
m r̄D

⊕
m)) O4 . . .ON

]

(22)
The matrices D

iΦ̄D
ιr
i and D

iΦ̄D
ιt
i map the time

derivatives of the angular and linear DOFs to
the angular velocity and linear velocity increase
of Di relative to Di−1, expressed in coordinates

along local unit vectors e
→D

i

(x,y,z). These matrices

are established from columns of products of three,
two or one incremental transformation matrices
like Φz for the first, second and third bottom-up
ranked rotation and corresonding translation re-
spectively. See §A.3.3 for further explanation.

The sensitivity ∂D
3ΦD

1/∂φ
D

i
v of the transforma-

tion matrix over the elements D2 and D3 to the
angular DOFs is clarified via the flatwise rotation
variation in elementD2. As mentioned above, this
concerns the second bottom-up ranked rotation in

D2:

∂D
3ΦD

1

∂φ
D

2
2

= D
3Φ̄D

2 · Φx(φ̄
D

2
3 ) ·

dΦz

dφ (φ̄
Dm

2 ) · Φy(φ̄
D

2
1 ) ,

with:
dΦz

dφ (φ̄) =

(

− sin φ̄ cos φ̄ 0

− cos φ̄ − sin φ̄ 0

0 0 0

)

(23)
Similar expressions hold for the sensitivity to the
other angular DOFs.

The average place vector from the root exit
(=flange entry) to the aerodynamic conversion
point on D3 is obtained by:

D
⊕
0 r̄Da

3 = D
3Φ̄D

1 · D
⊖
1 rD

⊕
1 + D

3Φ̄D
2 · D

⊖
2 rD

⊕
2 + D

⊖
3 rDa

3

(24)
The derivation principles for the expressions of
the kinematic variables are stepwise introduced
in §A.2.1 and §A.3.3 respectively.

Equations of motion
Now, let we consider equation (14) and (15) in
coordinates along the local coordinate system on
D3. The normal differential vector equations can
be written in general form by combining the aero-
dynamic and gravity loads to external loads:

D
⊖
3 ḣ-

D
3 = RStD

⊖
3 + EXtD

⊖
3 + D

⊖
4 tD

⊕
3 + D

⊖
3 rD

⊕
3 ×

D
⊖
4 fD

⊕
3

ṗD
3 = RSfD

⊖
3 + EXfD

⊖
3 + D

⊖
4 fD

⊕
3

(25)
For the assessment of the equilibrium and the
derivation of a linear dynamic model description
these equations are to subdivided into mean val-
ues and linear dependencies on varations of kine-
matic and input variables.

The rate of change in the (biased) angular impulse
and the linear impulse is written as a function of
mean and variations of the angular velocity and
acceleration, and the linear acceleration (expres-
sion for these kinematic variables are similar to
those for the linear velocity of point Da

3 by equa-
tion (16)):

D
⊖
3 ḣ-

D
3 = D

⊖
3 rD∗

3 × mD
3(āD∗

3 + δaD∗
3 ) + I

D
3 · δαD

3+

ω̄D
3×I

D
3 · ω̄D

3 + ω̄D
3×I

D
3 · δωD

3 + δωD
3×I

D
3 · ω̄D

3

ṗD
3 =mD

3 · (āD∗
3 + δaD∗

3 )

(26)
The inertia matrix I

D
3 contains the inertia mo-

ments and products relative to the centre of grav-
ity of D3 and applies along the axes of the final
coordinate system of D3. The matrix I

D
3 follows

from the principle moments of inertia J
D

3
x,y,z for

the concerning blade element.

The aerodynamic force and torque loads afDa
3 and

atD
a
3 are derived from the distributed force and



torque loading over the elements by:

afDa
3 =

1
∑

j=−1

D
3ΦDcv

3+j · aGF

fq3,j
· aq

Dcv
3+j

f

atD
a
3 = D

3ΦDcv
3

aGM

tq3

aqDcv
3

t
+

1
∑

j=−1

D
3ΦDcv

3+j aGF

tq3,j

aq
Dcv

3+j

f

(27)
The matrices aGF

fq3,j
, aGF

tq3,j
and aGM

tq3
are chosen

such that the ‘beam bending equivalence’ as dis-
cussed near equation (13) is maintained (see App.
C in [20]). The matrices D

3ΦDcv
3+j (j = −1, 0, 1)

map the normal and tangentially directed distrib-
uted force loads to flat- and edgwise oriented com-
ponents.

The aerodynamic loading is based on basic ap-
plication of lift-, drag- and moment polaires, as
e.g. described in [11]. Vector expressions apply
for the distributed force and torque loads. The
normal and tangential force components are in
the first and third location of coordinate vector
aq

Dcv
3

f , while minus the nose-up positive aerody-
namic pitch torque is in the second location of
aq

Dcv
3

t .

Note that the variations in the concentrated aero-
dynamic loads are determined by the variations

δaq
Dcv

3

f and δaq
Dcv

3
t as well as by products of matrix

variation δD
3ΦDcv

3+j and mean distributed loads
aq

Dcv
3

f and aq
Dcv

3

f .

With the ‘aerodynamic coefficient matrix’ CLD

and ‘aerodynamic coefficient vector’ CM defined
by:

C
D

3

LD =

0BB� CD 0 −CL

0 0 0
CL 0 CD

1CCAD
3

; C
D

3

M =

2664 0
−CM

0

3775D
3

(28)

the following linearised expressions hold for aq
Dcv

3

f

and aq
Dcv

3
t (first term in RHS represent mean val-

ues):

aq
Dcv

3

f = 1
2ρc

D
3 · ||ūD

3 || · C
D

3

LD(φ̄
D

3

a” ) · ūD
3+

1
2ρc

D
3 · (C̄

D
3

LD ·
ūD

3 ·ūD
3
T

||ūD
3 ||

+ ||ūD
3 || · C̄

D
3

LD) · δuD
3+

1
2ρc

D
3 · ||ūD

3 || ·
dC

D
3

LD

dφ
D

3
a”

∣

∣

∣

∣

φ̄
D

3
a”

· ūD
3 · δφ

D
3

a”

(29)
aq

Dcv
3

t = 1
2ρ(c

D
3)2 · ||ūD

3 ||2 · C
D

3

M (φ̄
D

3

a” )+

1
2ρ(c

D
3)2 · (2C̄

D
3

M · ūD
3
T) · δuD

3+

1
2ρ(cD3)

2 · ||uD
3 ||2 ·

dC
D

3
M

dφ
D

3
a”

∣

∣

∣

∣

φ̄
D

3
a”

· δφ
D

3

a”

(30)

with chord length cD
3 and the mass density of air

ρ.

The vector uD
3 contains the normal relative wind

speed U
D

3
n on D3 in the first location and mi-

nus the leadwise relative wind speed −U
D

3

ℓ in the
third location. It is the sum of the following ve-
locities in Da

3:

• normal wind speed,
• modulation of mean oblique wind speed,
• undisturbed tangential wind speed variation,
• minus axial and plus tangential induction

speeds,
• minus structural velocity vDa

3 .

The angle of attack φa” stands for the geometric
angle of attack on 1/4-chord, corrected with the
term 1

2 c
D

3/rD
3 · sin βD

3 for the cone angle. The
used linearised expression is:

φ
D

3

a” = arctan
Ū

D
3

n

Ū
D

3

ℓ

− φ̄
D

3
set +

1/2 cD
3

rD
3

· sin βD
3+

(ūD
3 )T

||ūD
3 ||2

·

(

0 0 1

0 0 0

−1 0 0

)

δuD
3 +

3
∑

i=1

3
∑

v=1

(

−
∂φ

D
3

set

∂φ
D

i
v

+
1/2 cD

3

rD
3

· cos β̄D
3 ·

∂βD
3

∂φ
D

i
v

)

· δφ
D

i
v

(31)
The (blade element specific) cone angle βD

3 and
setting angle φ

D
3

set vary dynamically. Their varia-
tion is considered relative to the rotor centre. So,
angular motion of the rotor centre caused by shaft
or tower deformation does not affect the setting
and cone angle!

The setting angle is mainly determined by the
aerodynamic pitch angle of the rotor blade and
the (controlled) pitch angle at the blade flange
entry. However, prebend and average deforma-
tion may link leadwise deformation variations to
setting angle variations. This dependency is part
of the sensitivity function of the setting angle to
the angular DOFs in the rotor blade.

The visco-elastic bending and torsion torques in
D⊖

3 are simply proportional to the angular DOFs.
Since all DOFs are modelled in the entry point of
the blade elements, the translation of the shear
centre relative to the foregoing element depends
on the linear as well as on angular bending DOFs.
A heuristic approximation tells that for the total
relative translation δρ̂D

3 holds:

δ

26664 ρ̂D3
x

ρ̂D3
y

ρ̂D3
z

37775 = δ

26664 ρD3
x

ρD3
y

ρD3
z

37775+δ

26664 φD3
x

φD3
y

φD3
z

37775 ×
D

⊖
3 rDs

3 (32)

The elastic linear bending loads are obtained from



a slightly modified expression for δρ̂D
3 in order to

take into account the average rotation increments.

The heuristic expressions for the elastic responsive
loads in D⊖

3 are:

RStD
⊖
3 =−





s
D

3
rx 0 0

0 s
D

3
ry 0

0 0 s
D

3
rz



 ·





φ̂D3
x

φ̂D3
y

φ̂D3
z



+ D
⊖
3 rDs

3×
RSfD

⊖
3

RSfD
⊖
3 =−





s
D

3
tx

0 0

0 s
D

3
ty

0

0 0 s
D

3
tz



 ·





ρ̂D3
x

ρ̂D3
y

ρ̂D3
z





(33)
The viscous reactions are obtained by replacing
φx by φ̇x and srx by drx etc. The dampers are
also not included in figure 14. Note that the pitch-
wise angular DOF in the flange element D1 can
be speficied for a visco-elastic responsive torque
or for controllable responsive torque.

Note that angular displacements φ̂(.) do not in-
clude the configuration angles from coning, skew-
ness and prebend but do include both the average
and dynamic deformation.

The gravity forces have a mean coordinate per-
pendicular to the rotor plane and periodic com-
ponents in lead and radial direction of the rotor
blades. The periodic components on the rotor
blades are governed via an explict input variable;
if it is active, compensation loads are to be in-
jected in the entry point of the support struc-
ture (see §A.3.2). The mean component and vari-
ations due to orientation change relative to the
mean component are always taken into account
unless zero-gravitation is specified. See §A.2.1
and §A.3.3 for explicit expressions for the rotor
shaft and the tower.

The expressions for the loads by the next element
D4 in the exit point of D3 are composed as the
difference between the loading on D4 and the con-
sumed rate of change of impulse by D4.

The coordinate system independent vector ex-
pressions for the feedthrough loads on element D3

from D4 are as follows:

D
4t
→D

⊕
3 =−D

⊖
4 ~̇h-

D
4

+ D
5t
→D

⊕
4 + D

⊖
4 r
→D

⊕
4

×
D

5f
→D

⊕
4 +

at
→Da

4 + D
⊖
4 r
→Da

4
×

af
→Da

4 + D
⊖
4 r
→D∗

4
×

gf
→D∗

4

D
4f
→D

⊕
3 =−~̇p

D
4 + D

5f
→D

⊕
4 + af

→Da
4 + gf

→D∗
4

(34)
The expressions in coordinates for these
feedthrough loads are similar to those dis-
cussed in the treatment of the equation of
motions of D3.

A.1.2 Pitch servo actuator submodel Dc

Figure 15 shows the layout of the submodel for
the pitch servo actuator. The interaction with
the blade flange submodel is included. A feed-
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Figure 15: Pitch servo acutator submodel

back scheme applies for the pitch position and the
pitch speed. The feedback laws in both the outer
position loop and the inner speed loop exist of
smoothed proportional-integral action (PI). The
transfer functions are given by (operator s implies
differentiation):

δtpts =
Kv · (1 + 1

τvs
)

(τvs/γv + 1)
· (δφ̇ptrs

+ δφ̇ptre
− δφ̇pt)

(35)
with

δφ̇ptrs
=
Kp · (1 + 1

τps
)

(τps/γp + 1)
· (δφptr − δφpt) (36)

TURBU includes a computation scheme for the
derivation of the gain and time constants
Kv, τv, Kp, τp from specified bandwidths and
damping rates for the inner speed loop and outer
position loop. The feedback loops can be de-
activated by specifying ‘0 Hz bandwidth values’.
So, it also possible to apply pitch speed servo con-
trol with setpoint δφ̇ptre

or to apply an external
pitch servo actuator that provides the pitching
torque δtpte .

The denumerator terms represent first order low
pass filters that accomplish the smoothing prop-
erty of the PI-feedback laws. The filter frequency
of these filters amounts to γv/τv and γp/τp rad/s.
The smoothing factors γv and γp are much larger
than 1 (typical γv = 3 and γp = 10; γv not so large
in order to avoid undesired fast eigenmotions).

A.1.3 Unsteady aerodynamics submodel Da

Submodel Da provides dynamic additions to the
aerodynamic profile coefficients for all N blade
elements. The model equations are obtained by
linearisation of the heuristic model for unsteady
dependency of the lift coefficient on the angle of



attack (Cℓ(α)) according to Snel [12]. This yields
the following first order linear differnetaion equa-
tion for the unsteady variation ∆Cℓus

for a blade
element:

τ · ˙∆Cℓus
+ C10 · ∆Cℓus

=

τ ·

(

2π cos 2π(α− α0) −
dCℓqs

dα

)

α̇

(37)
The time constant τ and coefficient C10 are de-
termined by

τ = c/(2
√

u2
n + u2

ℓ)

C10 = (1 + 1
2 |2π sin(α− α0) − Cℓqs

(α)|)/8
(38)

The angle of attack α0 implies the value for zero-
lift.

When we define parameters K and G by:

K = C10/τ

G = 2π · cos 2π(α− α0) −
dCℓqs

dα

(39)

the linearised equation can be written as:

˙∆Cℓus
= −K · ∆Cℓus

+G · α̇ (40)

Define the state variable z by:

z = ∆Cℓus
−G · α (41)

It is now allowed to transform the governing equa-
tion for the unsteady part of the lift coefficient
into the following first order state space model:

ż = −K · z −K ·G · α
∆Cℓus

= z +G · α
(42)

A.2 Drive-train equations

A.2.1 Rotor shaft & hub submodel Rr

The rotor shaft & hub is considered to behave
deformable as concerns the rotor shaft and un-
deformable as concerns the hub. Figure 16 shows
the physical layout and the vector variables in the
model element layout of Rr. Axi-symmetry is as-
sumed for the shaft.

The elasticity of the shaft is modelled via up to
six DOFs with visco-elastic responsive loads in
the shaft’s entry point R⊖

r . We chose to let co-
incide this entry point with the exit point R⊕

r in
the rotor centre Rc

r . Together with the inclusion
of the main bearing in the bending behaviour, the
chosen location of the entry and exit point neces-
sates to include cross couplings between the linear
displacement and the angular visco-elastic reac-
tion in a bending direction and vice versa. The
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Figure 16: Equation of motion governing vector vari-
ables for rotor shaft & hub submodel

mass, inertia moments and location of the cen-
tre of gravity and the bending, torsion and axial
stiffness follow from (weigthed) integration of the
shaft cross section data over the shaft-axis.

The coordinate system independent vector ex-
pressions for the equations of motion of the rotor
shaft & hub element Rr are the following:

R
⊖
r ~̇h-

Rr

= RSt
→R

⊖
r + D

⊖
1 t
→D

⊖
0 + E

⊖
1 t
→E

⊖
0 + F

⊖
1 t
→F

⊖
0 + Rc

r r
→R∗

r
×

gf
→R∗

r

~̇p
Rr

= RSf
→D

⊖
3 + D

⊖
1 f

→D
⊖
0 + E

⊖
1 f

→E
⊖
0 + F

⊖
1 f

→F
⊖
0 + gf

→R∗
r

(43)
For the angular and linear impulse of the element
Rr holds (no coordinate system reference):

Rc
r ~̇h-

Rr

= Rc
r r
→R∗

r
× ~̇p

Rr
+ I

Rr • α
→Rr + ω

→Rr
× I

Rr • ω
→Rr

~̇p
Rr

=mRra
→R∗

r

(44)
First, the evolution of the kinematric variables
over the main rotation and the DOFs in the drive-
train is considered (see also §A.3.3). Afterwards,
we continue with the formulation of the equations
of motion as normal differential vector equations
along the local coordinate system of e

→Rr

(x,y,z).

Kinematics drive-train
We chose the exit point of the support structure to



coincide with the rotor centre. The linearised ex-
pressions for the coordinates along e

→Rr

(x,y,z) of the

linear velocity and acceleration vRs
r , aRs

r in the
rotor centre before the effectuation of the DOFs
of Rr, so at slow shaft exit of the gearbox, are
then obtained by just modulating the correspond-
ing variables that leave the support structure The
modulation occurs with the average rotor speed Ω̄:

vRs
r = Φx(Ω̄t) · v

R
⊕
h

aRs
r = Φx(Ω̄t) · a

R
⊕
h

(45)

The angular velocity ωRs
r at the gearbox slow exit

is also obtained by modulation of the correspond-
ing variable on the support structure, but it in-
cludes in addition the average rotational speed Ω̄
and its variation δΩ as the effect of the generator
rotor DOF (δΩ = φ̇

R
f
x /igb):

ωRs
r = Φx(Ω̄t) · ω

R
h +

[

Ω̄

0

0

]

+

[

δΩ

0

0

]

(46)

The expression for the angular acceleration ωRs
r

contains similar terms (2nd time derivatives, but
also a vector product with the average rotational
velocity):

αRs
r = Φx(Ω̄t)·α

R
h+

[

δΩ̇

0

0

]

+(Φx(Ω̄t)·ω
R

h) ×

[

Ω̄

0

0

]

(47)
These expressions follow from the addition the-
orem for angular velocities and the theorem on
time-differentiation of vectors fixed in a rigid
body, which enables to obtain the first derivative
via a vector product ([10], chapter 2). A refor-
mulation of these theorems for the vectors here
involved yields (reference frame G in time deriva-
tives (G)d(.)/dt implies the fixed world):

ω
→Rs = Gω

→R
h + R

hω
→Rs

= ω
→R

h + (Ω̄ + δΩ) e
→R

h
x

α
→Rs = (G) d

dt(Gω
→R

h) + (G) d
dt(R

hω
→Rs)

= Gα
→R

h + (R
h
) d
dt(R

hω
→Rs) + Gω

→R
h

×
R

hω
→Rs

= α
→R

h + δΩ̇ e
→R

h
x + ω

→R
h

× (Ω̄ + δΩ) e
→R

h
x

(48)
Linearisation of the vector product in the last ex-
pression yields ω

→R
h

× Ω̄ e
→R

h
x . The unit vector

e
→R

h
x remains unchanged in the rotating frame of

reference at the gearbox slow exit.

Application of the two theorems to the DOFs
added by the rotor shaft yields for the linear ap-
proximations of the angular velocity and acceler-
ation (use ω

R
h̃ for Φx(Ω̄t) · ω

R
h etc., read ϕ̈

Rr
y for

ϕ̈r
y):

ωRr =

[

Ω̄

0

0

]

+ ω
R

h̃ +

[

δΩ

0

0

]

+

[

ϕ̇r
x

ϕ̇r
y

ϕ̇r
z

]

αRr = α
R

h̃ +

[

δΩ̇

0

0

]

+ ω
R

h̃×

[

Ω̄

0

0

]

+

[

ϕ̈r
x

ϕ̈r
y

ϕ̈r
z

]

+

[

Ω̄

0

0

]

×

[

ϕ̇r
x

ϕ̇r
y

ϕ̇r
z

]

(49)
The expression for the velocity of the centre of
gravity of Rr is derived similarly from the theo-
rems (ρ = ρ̄ + ̺; R

⊖
r rR∗

r = [r∗x 0 0]′ and ρ̄r
y =

0, ρ̄r
z = 0 because of assumed axi-symmetry):

vR∗
r =

[

Ω̄

0

0

]

×

[

r∗x + ρ̄rx
0

0

]

+ v
R

⊕

h̃ +

[

˙̺rx
˙̺ry
˙̺rz

]

+

[

δΩ + ϕ̇r
x

ϕ̇r
y

ϕ̇r
z

]

×

[

r∗x
0

0

]

+

[

Ω̄

0

0

]

×

[

̺rx
̺ry
̺rz

]

(50)
The effect of the linear position values ρ(.) on
the kinematic variables is not carried through in
TURBU. However, the effect of the linear speed and
acceleration values ˙̺(.) and ¨̺(.) is carried through.
Equilibrium assessment pointed out that the lin-
ear position values are very much smaller than
products of angular position values and typical
place vectors.

When terms involving ρ
(.)

are neglected, the ex-

pression for the acceleration of the centre of grav-
ity of Rr becomes:

aR∗
r =

[

Ω̄

0

0

]

×(

[

Ω̄

0

0

]

×

[

r∗x
0

0

]

) + a
R

⊕

h̃ +α
R

⊕

h̃ ×

[

r∗x
0

0

]

+

2ω
R

⊕

h̃ × (

[

Ω̄

0

0

]

×

[

r∗x
0

0

]

) +

[

¨̺rx
¨̺ry
¨̺rz

]

+

[

δΩ̇+ ϕ̈r
x

ϕ̈r
y

ϕ̈r
z

]

×

[

r∗x
0

0

]

+

2

[

Ω̄

0

0

]

×(

[

ϕ̇r
x

ϕ̇r
y

ϕ̇r
z

]

×

[

r∗x
0

0

]

)

(51)

The expressions above are derived by considering
the coordinates along e

→Rr

(x,y,z) of the coordinate
system independent velocity and acceleration:

v
→R∗

r = v
→R

⊕
h + (Rr) d

dt(R
⊖
r r
→R∗

r ) + ω
→Rr

×
R

⊖
r r
→R∗

r

a
→R∗

r = a
→R

⊕
h + (Rr) d2

dt2(R
⊖
r r
→R∗

r ) + α
→Rr

×
R

⊖
r r
→R∗

r

2ω
→Rr

×
(Rr) d

dt(R
⊖
r r
→R∗

r ) + ω
→Rr

× (ω
→Rr

×
R

⊖
r r
→R∗

r )

(52)
It is clear that because of the axi-symmetry a
number of terms in the expressions for the ve-
locity and acceleration will be zero. However, the
complete expressions are listed since they are fun-



damentally the same for the kinematic variables
on the rotor blades.

Equations of motion
Now we return to the equations of motion. The
expressions for the angular and linear impulse be-
come:

R
⊖
r ḣ-

Rr = R
⊖
r rR∗

r × mRrδaR∗
r + I

Rr · δαRr+

ω̄Rr×I
Rr · δωRr + δωRr×I

Rr · ω̄Rr

ṗRr =mRr · (āR∗
r + δaR∗

r )

(53)

The terms R
⊖
r rR∗

r × mRr āR∗
r , ω̄Rr×I

Rr · ω̄Rr and
mRr · āR∗

r do not appear because we now carried
through the implications of the axi-symmetry of
the rotor shaft & hub.

The force and torque loads from the rotor blades
enter the drive train as coordinates along the
blade roots’ coordinate systems, which are rotated
over the azimut offset ∆ψ along the rotor shaft
relative to the coordinate system (0, 2

3π and 4
3π

for blades D, E and F ). If we regroup the loads
in the equations of motion as responsive and ex-
ternal loads, the eoms are then formulated as:

R
⊖
r ḣ-

Rr = RStR
⊖
r + EXtR

⊖
r

ṗRr = RSfR
⊖
r + EXfR

⊖
r

(54)

with

EXtR
⊖
r =

∑

X=D,E,F

Φx(−∆ψX) · X
⊖
1 tX

⊖
0 +

[

r∗x
0

0

]

×
gfR∗

r

EXfR
⊖
r =

∑

X=D,E,F

Φx(−∆ψX) · X
⊖
1 fX

⊖
0 + gfR∗

r

(55)

The gravity loading coordinates along e
→Rr

(1,2,3) con-
tain mean, periodic and reactive terms. The ap-
proximate expression is

gfR∗
r = mRrg

[

sin θtl
0

0

]

+mRrgcos θtl

[

0

sin Ω̄t

cos Ω̄t

]

+

mRrgsin θtl

[

0 0 0

0 0 −1

0 1 0

][

φ
Rr
x

φ
Rr
y

φ
Rr
z

]

+ mRr Φx(Ω̄t) · δg
R

h

ori

(56)
See [20], App. B for the implemented expression
in TURBU, in which the operations with the tilt
angle θtl are replaced by transformation matrix
from the geographic cooridinate system to the na-
celle. The contribution by g

R
h

ori is caused by ori-
entation variations from dynamic tower bending,
which influence the position of the y- and z-axis
of the coordinate system on the rotor shaft. See
also §A.3.3.

This expression for the gravity loading is funda-
mentally the same for the rotor blades.

The expressions for the elastic responsive loads in
R⊖

r are (read s
Rr
trx for strx and φ

Rr
x for φx etc.):

RStR
⊖
r =−

(

strx 0 0

0 stry 0

0 0 strz

)





φx
φy
φz



−

(

0 0 0

0 0 sttyz

0 sttzy 0

)





ρx
ρy
ρz





RSfR
⊖
r =−

(

sftx 0 0

0 sfty 0

0 0 sftz

)





ρx
ρy
ρz



−

(

0 0 0

0 0 sfryz

0 sfrzy 0

)





φx
φy
φz





(57)
The bending stiffness values (y− and
z−orientation) are determined under the
following constraints, visualised in figure 16 (see
[20], Chapter 3):

• reponsive force & torques in rotor centre;
• zero linear displacement in main bearing cen-

tre;
• zero angular and linear displacement at slow

gearbox exit.

A.2.2 Generator rotor submodel Rf

The generator rotor is considered to behave un-
deformable while a co-axial visco-elastic or con-
trollable angular DOF is allowed. Only the co-
axial angular behaviour is taken into account in
the submodel. The equation of motion is based
on the real fast shaft angular speed.

The co-axial rotational speed of the generator ro-
tor is the sum of the corresponding rotational
speed of the nacelle, the variation ϕ̇

R
f
x of the rotor

itself (the DOF), and the average rotational speed
transformed via the gearbox, that is to say igbΩ̄.

The generator speed variation is transmitted to
the slow shaft of the gearbox, that is to say δΩ =
ϕ̇

R
f
x /igb.

A.3 Support structure equations

A.3.1 Gearbox house submodel Rh

The gearbox house is considered to behave un-
deformable while a co-axial visco-elastic or con-
trollable angular DOF is allowed. Only the co-
axial angular behaviour is taken into account in
the submodel. The full relative rotation φ

R
h
x ap-

plies in the equation of motion for Rh whereas
the rotational speed of the slow gearbox shaft is
augmented with the fraction ((igb−1)/igb) of ϕ̇

R
h
x .



A.3.2 Nacelle submodel Sn

The nacelle is considered to behave undeformable
while visco-elastic DOFs in all six directions are
allowed in the connection point with the tower top
(=yaw bearing centre) . The yaw DOF can also be
specified ‘controllable’. In that case the external
yaw torque replaces the visco-elastic responsive
behaviour in the yaw DOF.

Except the co-axial moment of inertia, all iner-
tia properties of the the gearbox house Rh and
generator rotor Rf are added to those of the na-
celle. For the generator rotor this also involves
gyrocopic effects because of the average rotation
that amounts to igbΩ̄.

A.3.3 Foundation and tower submodels Sf , St

The submodels for the foundation and the tower
are established from equations of motion that are
obtained in the same way as those for the struc-
tural submodels Xf and Xp of the rotor blades.
The model equations are basicly the same, but
are less complicated because we assume that in
the tower axis:

• the shear and elastic axis coincide;
• the concentrated hydrodynamic loads affect.

In addition there is no average motion of the sup-
port structure, so the equations of motion for an
element Sk do not include terms derived from
ω×I ·ω , as is the case in equation (26). This vec-
tor product now only contains products rotation
variations. These 2nd order terms are neglected
in the linear approach.

The masses of the underwater elements may be
augmented with the enclosed water mass.

First, the evolution of the kinematic variables over
the DOFs in the support structure is considered.
Afterwards, equations of motion are formulated
as normal differential vector equations along the
local coordinate systems of e

→S
k

(x,y,z).

Kinematics support structure
The angular velocity and acceleration of tower el-
ement S3 have zero mean values and are obtained
by:

δωS
3 = S

3Φ̄S
1 · ωS

1 +

3
∑

i=2

S
3Φ̄S

i · S
iΦ̄S

ιr
i · ϕ̇S

i

δαS
3 = S

3Φ̄S
1 · αS

1 +
3
∑

i=2

S
kΦ̄S

i · S
iΦ̄S

ιr
i · ϕ̈S

i

(58)
The ‘internal transformation matrices’ S

iΦ̄S
ιr
i and

S
iΦ̄S

ιt
i for the angular and linear DOFs are ob-

tained as (take i = 3; see also the clarification
after equation (22) in §2.1)):

S
3Φ̄S

ιr
3 =

[

Φx(φ̄
S
3

3 ) · Φy3
(φ̄

S
3

2 ) Φx2
(φ̄

S
3

3 ) e1

]

S
3Φ̄S

ιt
3 =

[

Φx(φ̄
S
3

3 ) · Φy3
(φ̄

S
3

2 ) Φx1
(φ̄

S
3

3 ) e2

]

(59)
See for a detailed treatment of these matrices
§4.3.1 in [19], specifically the equations 4.11, 4.12
and 4.37.

The bottom-up ranking of the angular DOFs
is torsion-foreaft-sideward, so the z−, y− and
x−axis are the respective rotation axes. This
implies that ϕ̇

S
3

1 contributes just via the unit
x−vector e1 to the rotational speed along the final

coordinate system e
→S

k

(1,2,3).

The second rotational speed increment, ϕ̇
S
3

2 along
the y-axis, contributes via the second column
Φx2

(φ̄
S
3

3 ) of the incremental transformation ma-
trix along the x-axis. The second column ap-
plies because the rotation is along the y-axis; it
concerns a column of the incremental transforma-
tion along the x-axis because the subsequent third
bottom-up ranked rotation is along the x-axis.
Similarly, the first bottom-up ranked rotation is
multiplied with the third column of the incremen-
tal transformation matrix along the y-axis, and
afterwards further transformed with incremental
transformation along the x-axis.

Note that the linear DOFs associated with bend-
ing angular DOFs are along perpendicularly ori-
ented axes. Thus, for the second translation
˙̺
S
3

2 , the first column of the transformation ma-
trix along the x-axis applies in the expressions for
S
3Φ̄S

ιt
3 since the y-axis rotation is accompanied by

the x-axis translation, etc.

The expressions for the fed forward kinematic
variables of the foundation element S1 are:

δωS
1 = S

1Φ̄S
ιr
1 · ϕ̇S

1

δαS
3 = S

1Φ̄S
ιr
1 · ϕ̈S

1
(60)

The expressions for the zero-mean linear velocity
and acceleration in the centre of gravity of tower
element S3 are:

δvS∗
3 = S

3Φ̄S
1 vS

⊕
1 +

3
∑

p=2

S
3Φ̄SpJ3

v=1(
SpΦ̄

S
1
v ×

S
⊖
p r

S
⊕|∗

p|3 ) ωS
1+

3
∑

i=2

S
3Φ̄

S
ιt
i
v ˙̺S

i +

3
∑

i=2

3
∑

p=i

S
3Φ̄SpJ3

v=1(
SpΦ̄

S
ιr
i
v ×

S
⊖
p r

S
⊕|∗

p|3 ) ϕ̇S
i



δaS∗
3 = S

3Φ̄S
1 aS

⊕
1 +

3
∑

p=2

S
3Φ̄SpJ3

v=1(
SpΦ̄

S
1
v ×

S
⊖
p r

S
⊕|∗

p|3 ) αS
1+

3
∑

i=2

S
3Φ̄

S
ιt
i
v ¨̺S

i +

3
∑

i=2

3
∑

p=i

S
3Φ̄SpJ3

v=1(
SpΦ̄

S
ιr
i
v ×

S
⊖
p r

S
⊕|∗

p|3 ) ϕ̈S
i

(61)
with:

SpΦ̄
S

ιr
i
v = SpΦ̄S

i · S
iΦ̄

S
ιr
i
v

SpΦ̄
S

ιt
i
v = SpΦ̄S

i · S
iΦ̄

S
ιt
i
v

(62)

The expressions for the fed forward kinematic
variables of the foundation element S1 are:

δvS
⊕
1 = S

1Φ̄
S

ιt
1
v ˙̺S

1 + J3
v=1(

S
1Φ̄

S
ιr
1
v ×

S
⊖
1 rS

⊕
1 ) ϕ̇S

1

δaS
⊕
1 = S

1Φ̄
S

ιt
1
v ¨̺S

1 + J3
v=1(

S
1Φ̄

S
ιr
1
v ×

S
⊖
1 rS

⊕
1 ) ϕ̈S

1

(63)

Equations of motion
For element S3 the equations of motion, expressed
as normal differential vector equations along the
coordinate system e

→S
3

(x,y,z), then look like:

S
⊖
3 rS∗

3 × mS
3 · δaS∗

3 + I
S
3 · δαS

3 = RStS
⊖
3 +htS

h
3 +

S
⊖
3 rSh

3×
hfSh

3 +S
⊖
3 rS∗

3×
gfS∗

3 + S
⊖
4 tS

⊕
3 +S

⊖
3 rS

⊕
3 ×

S
⊖
4 fS

⊕
3

mS
3 · δaS∗

3 = RSfS
⊖
3 +hfSh

3 +gfS∗
3 +S

⊖
4 fS

⊕
3

(64)
The concentrated hydrodynamic forces are ex-
pressed similarly to the concentrated aerodynamic
forces by equation (27), except that distributed
torque loading is omitted and that matrix ele-
ments ‘on z-axis locations’ are shifted to ‘y-axis
locations’:

hfSh
3 =

1
∑

j=−1

hGF

fq3,j
· S

3ΦH · q
Sh
3+j

f

htS
h
3 =

1
∑

j=−1

hGF

tq3,j
· S

3ΦH · q
Sh
3+j

f

(65)

Morison’s equation is adopted for the calculation
of the hydrodynamic distributed loads; see [13].
Average loads may exist when water current is
specified. Only the horizontal distributed hydro-
dynamic forces are consdired. This component is

in the first location of vector q
Sh
3

f .

With C
S

k

V and C
S

k

M the ‘hydrodynamic viscous
and mass coefficient matrices’, given by

C
S
3

V =

0B� C
Sh
3

V 0 0

0 0 0

0 0 0

1CA ; C
S
3

M =

0B� C
Sh
3

M 0 0

0 0 0

0 0 0

1CA
(66)

the following expression holds for the coordinate

vector q
Sh
3

f :

q
Sh
3

f = 1
2ρH · DSh

3 · C
S
3

V · (|wSh
3 |. × wSh

3 )+

1
4ρH · π(DSh

3 )2 · C
S
3

M · ẇSh
3

(67)
The ‘. × ’ operation means ‘element by element’
regular multiplication.

For the relative wave speed and wave acceleration
vector hold:

wS
3 =

264 w
Sh
3

horz

0

0

375− HΦS
3 · vSh

3

ẇS
3 =

264 ẇ
Sh
3

horz

0

0

375− C
Sh
3

M −1

C
Sh
3

M

· HΦS
3 · aSh

3

(68)
The horizontal wave speed whorz and acceleration
ẇhorz pertain to the underwater level for hydro-
dynamic conversion point Sh

3 and follow from the
wave spectrum and the dispersion relation; see
§10.3 in [19]. The hydrodynamic load is also af-
fected by the tower speed v and tower acceleration
a in the point Sh

3 .

Matrix S
3ΦH transforms coordinates along e

→H

to
coordinates along the ‘structural tower element
coordinate system’ e

→S
3 with co-axial z-axis; the

x- and y-axis of e
→S

3 coincide with the neutral
(bending-)elastic axes for sideward and foreaft ori-
ented tower deformation. The matrix depends on
soil compliance and tower deformation, and on the
orientation difference between the waves and the
tower base.

The gravity loading gfS∗
3 consists of mean load-

ing and variation due to change of orientation by
tower deformation. The linearised expression is:

gfS∗
3 = gf̄

S∗
3 +

∂gfS∗
3

∂g
S
1

ori

· δg
S
1

ori +
∂gfS∗

3

∂φS · δφS

(69)
For the sensitivities ∂gfS∗

3 /∂g
S
1

ori and ∂gfS∗
3 /∂φS

holds:

∂gfS∗
3

∂g
S
1

ori

= mS
3 · S

kΦ̄S
1

∂gfS∗
3

∂φS = [O(1) . . .

Jki=2(J3
v=1(

∂S
3ΦS

0

∂φ
S

i
v

· BΦG

3 · mS
3 · g)) O(4...M)]

(70)



For the feedthrough gravity variation δg
S
1

ori holds

δg
S
1

ori =
3
∑

v=1

∂S
1ΦS

0

∂φ
S
1

v

· BΦG

3 · gδφ
S
1
v

with
BΦG = Φy(−θ

B) · Φz(γ
B)
(71)

The angles θB and γB define the orientation of the
wind turbine base B relative to the geographic co-
ordinate system that corresponds with the com-
pass.

The responsive loads RStS
⊖
k and RStS

⊖
k in the tower

elements S2 up to SM−1 are identically expressed
in DOFs as those in the blade profile & structure
elements.

The responsive loads RSfS
⊖
1 and RStS

⊖
1 in the foun-

dation element may be explicitely specified by
spring and damper constants, including cross cou-
pling terms for coupled linear and angular terms
in a bending direction, just as for the rotor shaft &
hub. TURBU also facilitates the automatic calcu-
lation of (cross coupled) springs in the mounting
point of the wind turbine (entry point S⊖

1 ) based
on under ground tower extension. The expres-
sions for the responsive loads are similar to those
in the rotor centre by equation (57).

A.4 Wake equations

Consider a rotor annulus which coincides with the
track made by three corresponding elements of
the rotor blades. The ‘equations of equilibrium’
correspond to those adopted by Lindenburg and
Schepers in [16]. Herein is assumed that only the
lift forces contribute to the setting of the aerody-
namic equilibrium. The equation for the axial and
tangential induction speed Ui and Vi then looks
like (number of blades B = 3):

1
2ρCL(φa”)cS · Uℓ cos β

√

U 2
n + U 2

ℓ = 2π
B ρr · ∆r F̄p2UiUtr

1
2ρCL(φa”)cS · Un

√

U 2
n + U 2

ℓ = 2π
B ρr∆r F̄p2ViUtr

(72)
In here Utr represents the transportation speed
and F̄p Prandtl’s correction factor.

Transportation speed Utr is the vector sum of the
axial, lateral and vertical wind speed in the rotor
annulus; the axial speed is diminished with the ax-
ial induction. In dynamic conditions the average
over the wind speeds on the three blade elements
that rotate in the annulus are considered for the
determination of Utr. Prandtl’s correction factor
F̄p accounts for both tip and root effects. The ex-

pressions for Utr and F̄p are generally known and
can a.o. be found in [11], [16] and [20].

The point of departure for the linearised model
for the induction transients is based on the follow-
ing formulation of the ECN Differential Equation
model:

d
dt(U

W
3

im
)=−

U
D

3

im
U

D
3

tr + U
E

3

im
U

E
3

tr + U
F
3

im
U

F
3

tr

B · R · F
W

3
a

−

(aLf
D

3
1 + aLf

E
3

1 + aLf
F
3

1 )

ρ2πrW
3 ∆rW

3 · 2R · F
W

3
a (

FD
3+FE

3+FF
3

B )
(73)

with:

F
W

3
a =

2π
∫ 2π

0

{ 1 − (rW
3/R) cosψ

[1 + (rW
3/R)

2

− 2(rW
3/R) cosψ]

1.5} dψ

(74)

The lift force reactions aLf
X

k

1 by the blades, along
the x-axis of the annulus coordinate systems, cor-
respond with the left hand term in the axial equi-
libirum equation (72) with a minus sign.

Here the 3rd rotor annulus is considered, which
coincides with the track made by blade elements
D3, E3 and F3.

This formulation establishes a clear interface
with the structural and quasi-steady aerodynamic
blade submodels in accordance with figure 2. In
addition, it accounts for the influence of blade-
individual flow conditions, although this is lim-
ited to affection of the assumed annulus-uniform
induction.

TURBU facilitates to specify the number of blade
elements as an integer muliplite of the rotor an-
nuli, in that case the lift reaction forces are
summed over all blade elements within an annu-
lus.


