

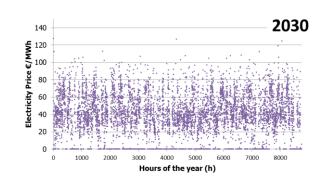
System Evaluation of Power to Ammonia

System Evaluation of Power to Ammonia

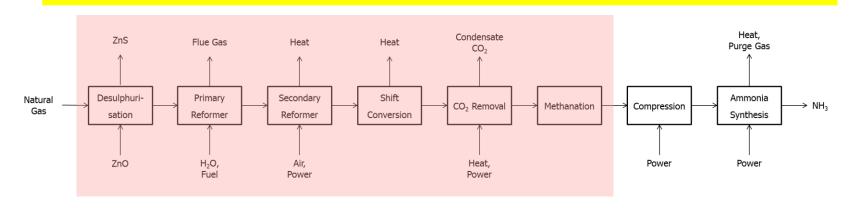
A Dutch Perspective

Rotterdam 19/05/2017

www.ecn.nl


Introduction

- :he
- Increasing levels of CO₂ in the atmosphere
- Source of CO₂ emission:
 - Electricity Generation
 - Transport
 - Industrial



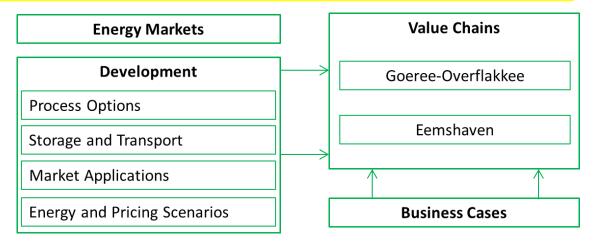
- Increased electricity market volatility
 - Fossil power plants shut down due to increased hours of low electricity prices
- Mismatch in supply and demand of electricity

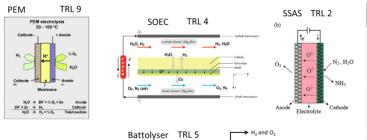
One possible solution is production, storage and combustion of Ammonia for Energy Storage

Introduction

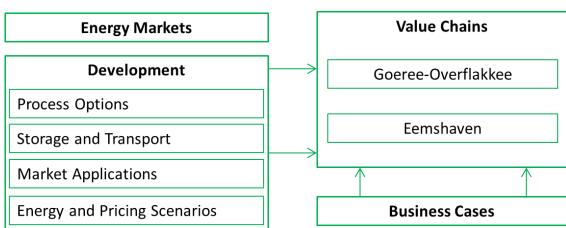
NORTHWEST EUROPE: GAS COSTS AND AMMONIA PRICE

Background


Process Technology



UNIVERSITY OF


Year	Renewables	Fuel Price		
2023	Normal	High		
		Low		
2030	Normal	High		
		Low		
2030	High	High		
		Low		

Background

Approach – Development

Techno-economic study

- Technical feasibility and process line up
- Flexibility assessment
- CAPEX and OPEX estimation

Benchmarking

- Ammonia production Compare against Steam
 Methane Reforming (SMR)
- Energy Storage Compare against mechanical,
 electrical and chemical energy storage systems

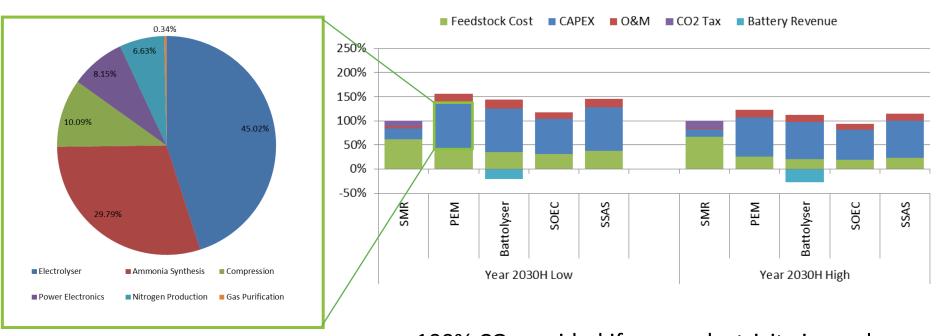
R&D Roadmap

$$Cost \ of \ Ammonia\left(\frac{\epsilon}{t}\right) = \frac{C_{manufacture}\left(\frac{\epsilon}{y}\right) - R_{Products}\left(\frac{\epsilon}{y}\right)}{M_{NH_3}\left(\frac{t}{y}\right)}$$

Cost to Manufacture:

- CAPEX (Annualized: 7% and 15 yrs)
- 0&M
- Feedstock costs (Day Ahead Market)

Revenue from products


Additional revenue from operation as a battery

$$CO_{2}Avoided~(\%) = \frac{\sum m_{CO_{2},ref} - \sum m_{CO_{2}}}{\sum m_{CO_{2},ref}}$$

Results

Cost of Ammonia for operating on the Day Ahead Market

100% CO₂ avoided if **green** electricity is used

Results

R&D Roadmap for PEM, Battolyser and SSAS

PEM

Technology Area	Critical Focus Areas	Importance	Understanding	Opportunity
Membrane	Reduce membrane thickness	9	High	High
	Membrane mechanical reinforcement	5	Medium	Medium
	Improve membrane dimensional stability	9	High	High
Catalyst	Catalyst loading reduction (O ₂)	7	Medium	High
Protection Coating	ection Coating Alternate lower cost coating materials		Medium	High
Accelerated Life Testing	Reduce design and material validation test time	9	Low	High
	Remove barriers for new materials market acceptance	9	Medium	High

Battolyser

- Power level vs. efficiency optimization
- Scale up technology from Lab to Demo

Solid State Ammonia Synthesis

- Increasing material durability
- Increasing product selectivity
- Operating conditions (Temperature and Pressures)

Conclusion

- Power to Ammonia (P2A) is technically feasible (has been for ~80 years)
- P2A can be deployed economically with sufficient renewable penetration
- No CO_2 emissions if green electricity is used. 'Grey' electricity leads to ~3x the normal emissions of SMR
- Cost drivers for P2A
 - Feedstock
 - CAPEX of Electrolyzer (+low utilization)
- R&D Roadmap for cost reduction and performance improvement

Further work

- PEM Testing Facility (ECN)
 - Extended duration and accelerated degradation testing
 - Platform to bring together component and Electrolyzer manufacturers
- Field testing cost efficient PEM (ECN)
- Demonstration 6 MW PEM in steel production
- STW Projects (TU Delft)
 - Battolyser and SSAS

Acknowledgements

TU Delft

Ir. drs. Giljam Bierman, PDEng Ir. Pieter Swinkels Prof. dr. Fokko Mulder Ir. John Nijenhuis

Giulia Botta Dr. P. V. Aravind Dr. Wim Haije

Financial contribution

- Topsector Energy
- VoltaChem

ECN

Ir. Yvonne van Delft Marija Saric, PDEng

OCI Nitrogen

Ir. Ruud Swarts

CE Delft

Maarten Afman Sebastiaan Hers

Stedin

Ir. Guy Konings
Patrice Pawiroredjo

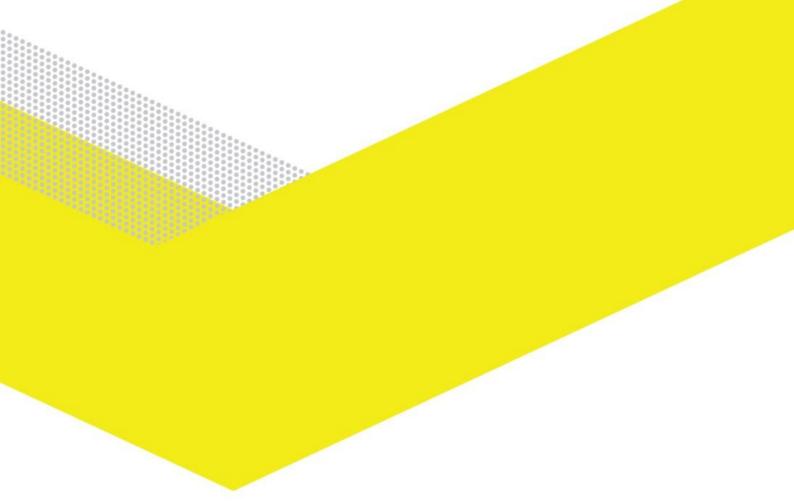
University of Twente

Dr. Ir. Jim kok

ISPT

Hans Wiltink Anna Flammos

Nuon


Geert Laagland Ir. Han Raas Wouter de Jong

AkzoNobel

Dr. Ir. Thijs de Groot

Proton Ventures

Bob Weehuizen
Dr. Yasmina Bennani

ECN

Westerduinweg 3 P.O. Box 1
1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl