

TORWASH® sewage sludge treatment

A.J. Grootjes (ECN)

J.R. Pels (ECN)

M.C. Carbo (ECN)

H. Kuipers (Waterschap Zuiderzeeland)

J. Vogelaar (Paques BV)

J.H.A. Kiel (ECN)

TORWASH® sewage sludge treatment

Increased biogas production, highly-efficient dewatering and phosphate recovery

A.J. Grootjes, J.R. Pels, M.C. Carbo, H. Kuipers, J. Vogelaar and J.H.A. Kiel

EUBCE, Stockholm 12-15 June 2017

www.ecn.nl

Table of Contents

- Introduction to TORWASH®
- What can TORWASH® do for sewage sludge?
 - Two process diagrams
- Experimental results
 - dewatering
 - elemental distribution of elements
 - digestion of effluent
- Process configuration for maximum biogas (methane) and energy yield
- Controlling the fate of phosphorus → recovery as fertilizer

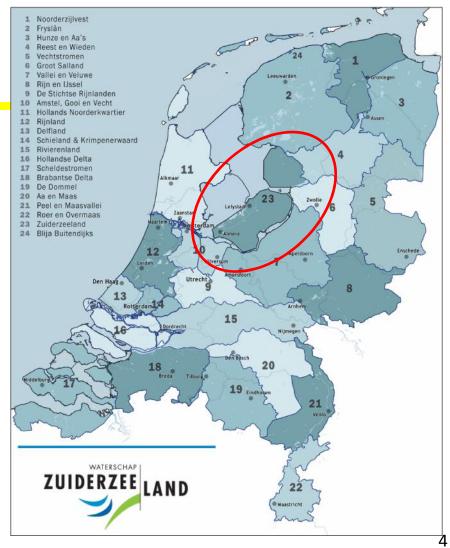
ECN acts as a bridge between science and corporate innovation

Mission

We develop knowledge and technologies that enable a transition to a sustainable energy system

Not-for-profit research institute Founded in 1955 5 Commercial licensing deals / year 500 Employees

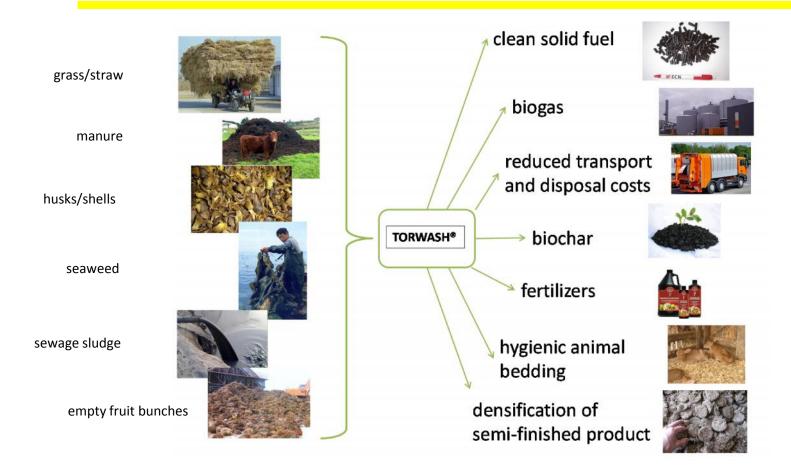
+/-20 patents a year € 80 M annual turnover



Water Authority Zuiderzeeland

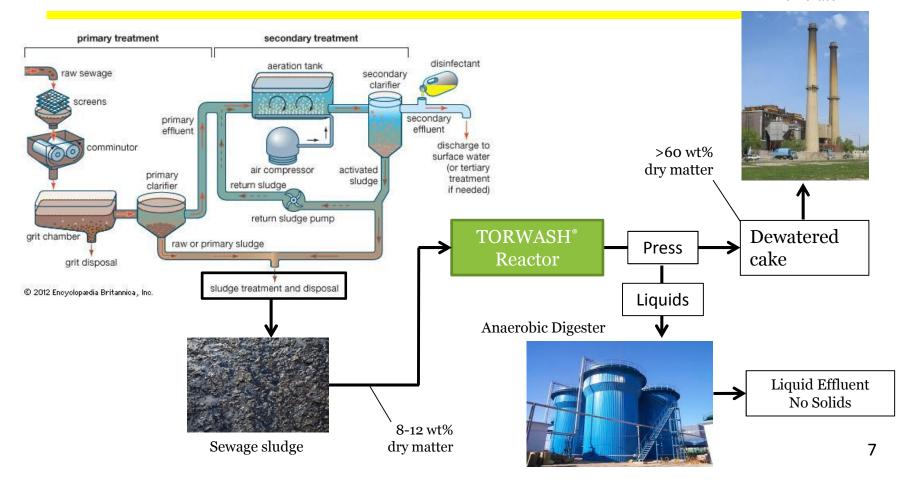
- Population: 400.000
- Largest city: Almere
- No. 1 priority: clean water, today and in the future
- Climate neutrality
- Self-sufficient in energy
- Low costs for citizens
- 5 sewage treatment plants
 - with digestion
 - without digestion

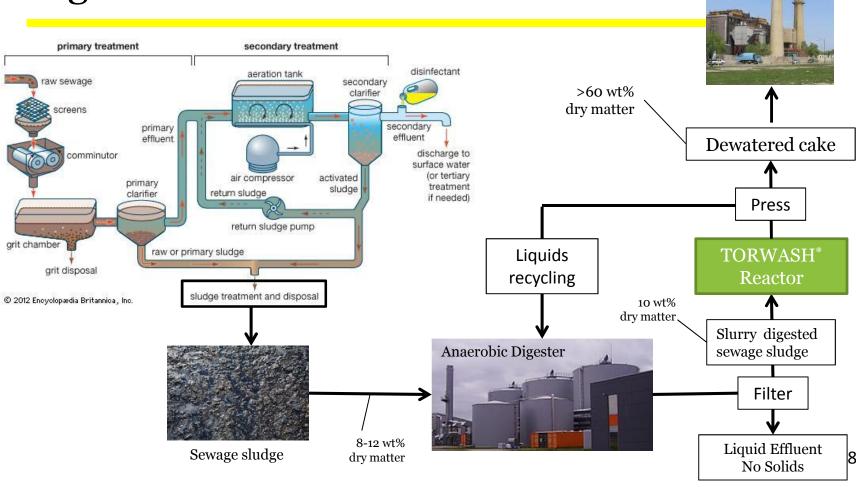
TORWASH® = Wet torrefaction + Washing



- Upgrading of biomass feedstocks that have too much water or too much salt
- Under pressure in liquid water 150-250°C → changes in biomass structure that weaken fibres and releases water + ions
- Unique concept:
 - It enables efficient mechanical dewatering
 - It enables removal of salts to a high degree
 - Mild process conditions allow digestion of the effluent
 - ECN patent WO 2013/162355
- Goal: maximum energy in form of 2 fuels
 - Solid biomass pellets
 - Biogas from digestion of effluent
- Latest development: controlled release of phosphorus

TORWASH®: A multi-purpose process for green solutions



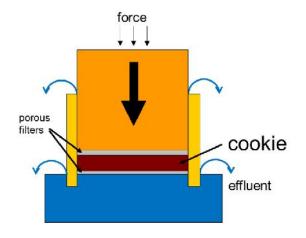


$TORWASH^{\mathbb{R}} \rightarrow Digestion$

incinerator

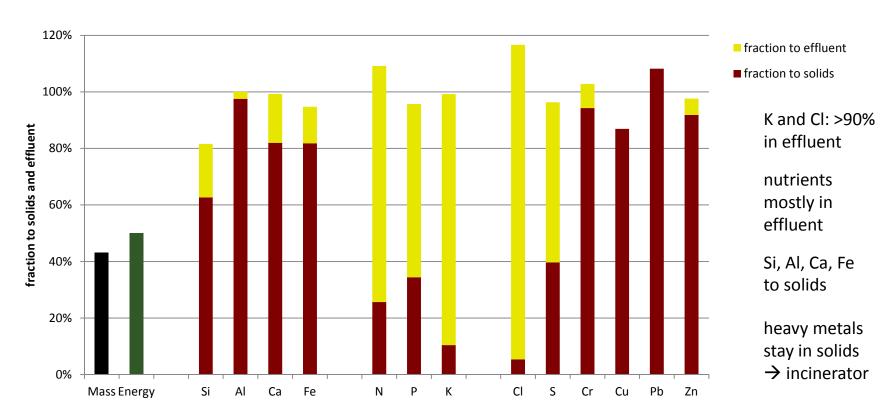
Digestion \rightarrow TORWASH®

Project TORWASH® of sewage sludge


Experimental programme

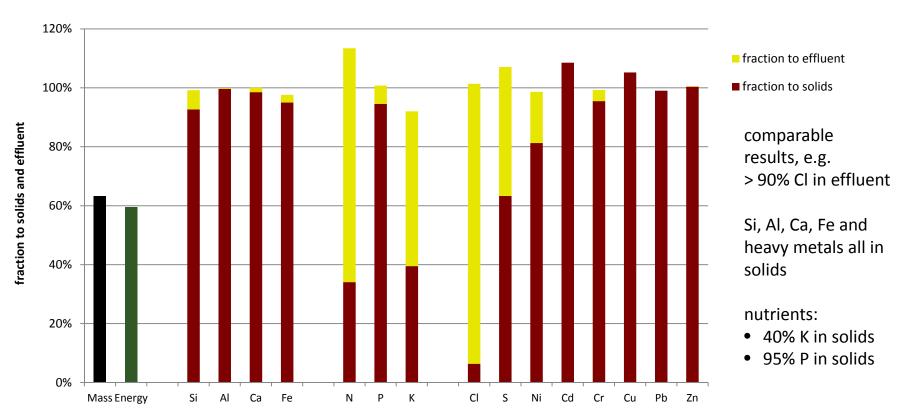
- Two kinds of sewage sludge: digested and undigested
- (Three kinds of manure (cows, pigs, chicken))
- Testing in 20L autoclave with sewage sludge "as received"
- Slurry pressed in Carver Die (2¼ inch)
- Digestion tests, batch 18-25 days

Highly efficient mechanical dewatering


- modern sludge presses reach 21-24% dry matter
- manure separator: up to 20% dry matter

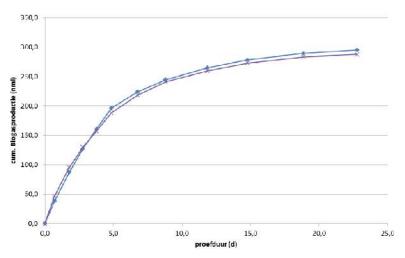
	Sludge	Press cake	
	before TORWASH®	after TORWASH®	
Undigested sludge	8-12%	67%	
Digested sludge	8-12%	61%	
Manure	5-20%	67%	

TORWASH® of undigested sludge Distribution of elements



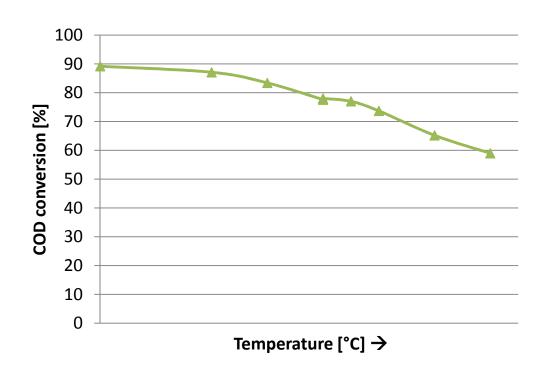
^{*} Mass and Energy in solid product

TORWASH® of digested sludge Distribution of elements



Digestion tests

Batch tests at OPURE


- 18-25 days
- Filtered effluent after TORWASH®

Measurements

- COD measurements before and after
- biogas production
- methane content → methane production
- For TORWASH® assessment purposes, digestibility is defined as the COD conversion

Digestion of TORWASH® effluent COD in effluent for undigested sewage sludge

- Digestibility expressed as conversion of COD
- Gradual decrease with increasing temperature
- Digestibility is the same for effluent from TORWASH® of grass, EFB, etc.

Biogas production

- Biogas from digestion of TORWASH® effluent
 - More than 50% of organic dry matter dissolved
 - Digestion of dissolved organic matter is fast
- High rate IC(X)-type reactor, e.g. BIOPAQ®IC
 - Efficient: short time: hours instead of weeks
 - Less volume, more biogas yield
 - Cost effective (low CAPEX, OPEX)

BIOPAQ®IC source: Paques

Digestion of TORWASH® effluent Undigested vs. digested sewage sludge

- Digestion expressed as conversion of COD
- Green = undigested sludge
- Blue = digested sludge
- Effluents equally well digestible

Methane and energy yield in different **ECN** configurations

- TORWASH® + digestion of only effluent gives the same amounts of biogas as TPH + full classic digestion (= +10% compared to classic digestion)
- TORWASH® of digestate after classic digestion:
 - Digestion of effluent gives extra biogas, solid product easy to dewater
 - Effluent may be recycled back to main digester → open question

Process configuration (starting with undigested sludge)	Current situation (only centrifuge)	Classic digestion	Classic Digestion with TPH	IC(X) digestion	Classic Digestion → TORWASH® → IC(X) digestion
Methane Production [Nm³/kg organic dm]	0	0.13	0.14	0.14	0.19
Dry matter content of press cake after dewatering [wt%]	21 – 24	21 – 24	max. 30	> 65	> 60
Total energy production * [MJ/kg organic dm]	2.8	6.3	7.0	11.7	12.2

^{*} Energy production is sum of thermal values of two fuels, biogas and press cake, based on LHV

P-recovery via TORWASH®

- Sewage sludge and manure contain large amounts of phosphorus
- Solubility of phosphorus changes with TORWASH® chemistry
 - Temperature is one parameter ...
 - ... but limited by TORWASH® optimization
 - Other conditions used to manipulate P
- Fate of P can be controlled in TORWASH®
 - 95% P in solids is possible
 - 95% P in effluent is also possible
- Effluent from TORWASH® may contain double the amount of P compared to effluent from TPH

Summary

- Lab tests have been successful for both digested and undigested sludge
- Main result: Sewage sludge converted into solid fuel and biogas
 - Chemical changes enable efficient dewatering and salt removal
 - Digested and undigested sludge: press cake > 60% dry matter
 - Effluent from TORWASH® digestible, but it gradually loses digestion capability with increasing temperature
 - At preferred TORWASH® conditions about 70% digestibility
 - TORWASH® of digested sludge gives extra biogas
 - Two TORWASH® process configurations that boost energy production
- Fate of Phosphorus can be controlled for recovery
 - Temperature is just one parameter that determines fate of P and other elements
 - Other parameters used to control P \rightarrow fertilizer, via effluent or via solids

Consortium

This presentation was made in close cooperation with Water Authority Zuiderzeeland

WETTERSKIP FRYSLÂN

ECN

Westerduinweg 3 P.O. Box 1 1755 LE Petten 1755 ZG Petten

The Netherlands The Netherlands

T +31 88 515 49 49 biomassa@ecn.nl

F +31 88 515 44 80 www.ecn.nl

