

PYRENA: PYRolysis Equipment for New Approaches to produce better bio-oil

PYRENA PYRolysis Equipment for New Approaches to produce better bio-oil

Paul de Wild, Ron van der Laan, Raghu Sumbharaju, Herman Bodenstaff, Edwin Brouwer, Christiaan van der Meijd<mark>en</mark>

www.ecn.nl

Catalytic fast pyrolysis

Goal(s)

- Improve pyrolysis oil quality regarding its application as a (precursor for) transportation fuels (lower O, less acidic, less unstable, less water, etc.)
- Change pyrolysis oil composition to facilitate the production of value-added chemicals and/or groups of chemicals from the crude liquid product(s)

Challenges

- Low organic yield (low carbon efficiency)
- Unfavourable economics due to high operating costs (feedstock, expensive catalysts) and relatively low value of the liquid product → low price fossil oil!

Our approach

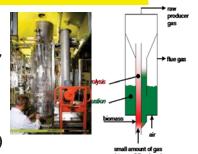
- Combine the production of better bio-(fuel)oil with recovery of specific chemicals (e.g. acids, phenolics, anhydrosugars, etc.)
- Research is supported by techno-economic assessments

Applications for bio-oil and its fractions

ECN

Pyrolysis facilities at ECN

- Bubbling fluidised bed (BFB)
 - Multifunctional unit for pyrolysis, gasification, combustion, 1 kg/hr, T up to 1100°C, continuous operation → intermediate – fast pyrolysis


Multifunctional unit, 5 kg/hr, T up to 900°C, continuous → fast pyrolysis?

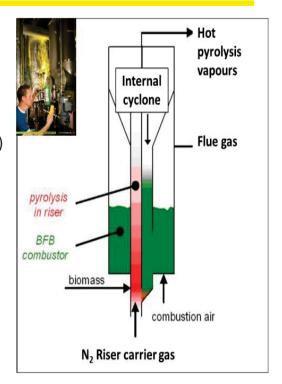
Auger moving bed (Pyromaat)

- Multifunctional unit, 3 kg/hr, T up to 600°C, continuous
 - → slow intermediate pyrolysis

Analytical pyrolysis - GCMS

High throughput screening, 350 – 1000°C, mg scale, batch operation

PYRENA fast pyrolysis


Based on MILENA™ indirect gasifier technology

Integrated reactor system:

- EF pyrolysis (riser) BFB combustor (annulus)
- 5 kg/hr, T up to 900°C, continuous operation
- Thermal pyrolysis (no catalysts)
- Ex-situ pyrolysis (downstream catalyst)
- In-situ pyrolysis (catalyst in combustor bed), suitable for continuous catalyst regeneration
- In-situ and ex-situ combined....

Pyrolysis oil recovery

 Condensation train with 4°C gas cooler, ambient temperature ESP,
 -30°C freeze condenser

PYRENA pros and cons

Advantages

- Compact integrated design
- Autothermal operation
- Lower fluidisation gas flow rate (riser) when compared to CFB
- Continuous catalyst regeneration, combination in-situ ex-situ catalysis
- Pyrolysis combustion and pyrolysis gasification possible
- Production of larger bio-oil samples for further evaluation / application trials
- Scale-up possibilities

Disadvantages

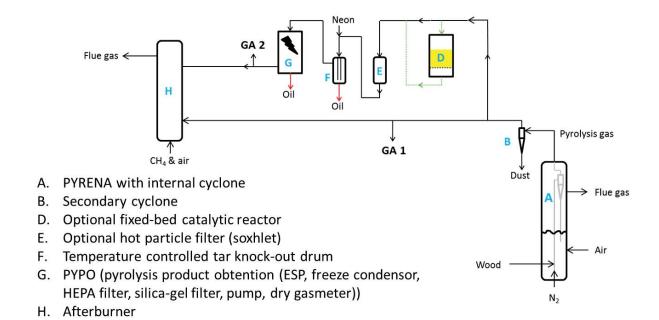
- Compact integrated design
- Start-up; adjusting proper hydrodynamics

Current fast pyrolysis activities at ECN

Optimization of PYRENA

- Participation in international Round Robin on fast pyrolysis (poster 39; Doug Elliott)
- Improving reactor hydrodynamics and decreasing hot vapour residence time
- Techno-economic evaluations

Application of catalysts, in-situ and/or ex-situ


 Using commercial and alternative (natural mineral – based) catalysts to improve / alter the composition of the resulting pyrolysis oil

DSP of fast pyrolysis products

- Staged condensation, e.g. to separate water / organics
- Off-line removal of water / low-boilers by Rotavapping

PYRENA lay-out scheme

GA1, GA2: gas analysis points, including a presample system

Fast pyrolysis experiments

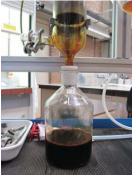
Materials

- − Softwood: Rettenmaier Lignocel grade 9: 0.9 − 1.1 mm sawdust from selected conifers
- Hybrid poplar fines < 0.5 mm (from Idaho National Lab. US; for Round Robin test)
- Wheat straw fines < 0.5 mm (from Idaho National Lab. US; for Round Robin test)

Ash content at 550°C:

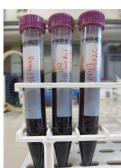
Softwood: 0.5 wt% Poplar: 3.3 wt% Straw: 16 wt%

- Bed material: silica sand 0.06 2 mm;
- In-situ catalysis: Austrian olivine, sieved < 0.15 mm for in-situ catalysis
- Ex-situ catalysis: commercial zeolites



Fast pyrolysis experiments

Pyrolysis and sampling conditions


- Feedstock intake 3 kg/hr
- 530°C, 1 atm, N₂ fluidization gas
- Overall hot vapour residence time 2-3 sec
- Pyrolysis oil collection via
 4°C condenser, ESP and -30°C freeze condenser
- After collection samples are back-mixed (ultrathurrax)

First results softwood

- Non-catalytic pyrolysis
 - 78% oil (34% water, 44% organics); 2-phase oil
 - 105% mass balance (78% oil, 14% gas, 14% char)
- Catalytic pyrolysis with downstream fixed bed 1:10 zeolite:alumina at 440°C
 - 70% oil (33% water, 37% organics); also 2-phase oil
 - 99% mass balance (70% oil, 15% gas, 14% char)
 - Severely coked catalyst
- Catalytic pyrolysis with sand-diluted olivine as in-bed catalyst
 - **81% oil** 2-phase oil
 - 114% mass balance (81% oil, 14% gas, 19% char)

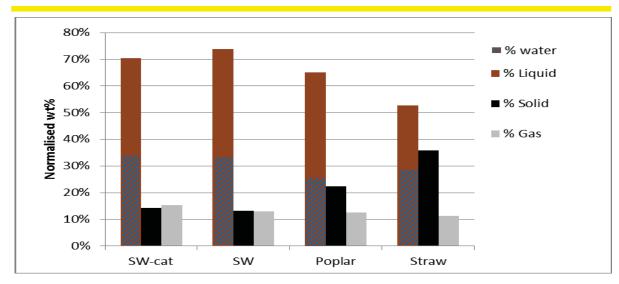
Results poplar and wheat straw

- IEA-T34 Round Robin on fast pyrolysis of biomass
- Poplar
 - 64% oil (22% water, 42% organics);
 1-phase oil
 - 98% mass balance (64% oil, 12% gas, 22% char)
- Wheat straw
 - 44% oil (24% water, 20% organics);
 2-phase oil
 - 82% mass balance
 (44% oil, 9% gas, 29% char)

Round Robin analysis results

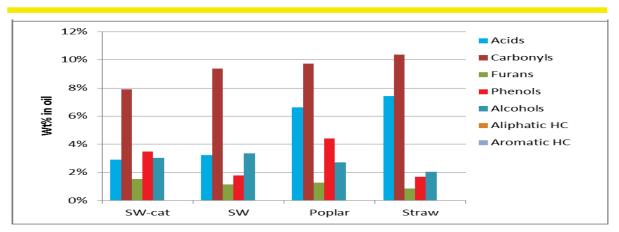
	Poplar	Wheat straw
Density [g/cm³]	1.149	1.026
Viscosity @ 20°C [cSt]	25.4	n/a
Viscosity @ 50°C [cSt]	5.9	n/a
Aging: Viscosity @ 20°C [cSt]		n/a
Aging: Viscosity @ 50°C [cSt]		n/a
Water content [%]	31.4	n/a
TAN [mg KOH/g]	83.3	n/a
Ash content in oil @ 775°C [%]		
Carbon C [%]	39.2	n/a
Hydrogen H [%]	8.3	n/a
Nitrogen N [%]	0.1	n/a
Py-Lignin [%]	11.75	10.61
Solids [%]		
Sodium Na [ppm]	2.2	10.6
Potassium K [ppm]	16.6	725.3
Magnesium Mg [ppm]	7.3	82.6
Calcium Ca [ppm]	28.5	445.3
Sulphur [ppm]	87.1	922.1
GPC [g/mol]	1555	2296
Dispersity	3.39	3.950

Measured by:
Thünen Institute of Wood
Research, Germany
(Dr. Dietrich Meier)
Incomplete analysis of
wheat straw oil due to
phase separation

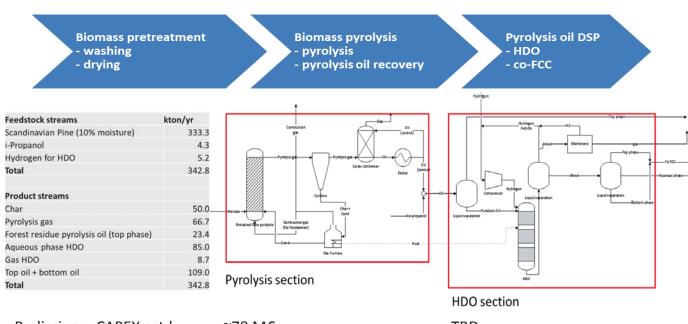

Conclusion:

Results representative for proper fast pyrolysis!

PYRENA suitable for FP!


Major products for softwood, poplar, straw

- 35 45% of water in oils;
 (too long hot vapour residence time and/or too short solids residence time)
- Less than 15 wt% gas
- Most solids (char+ash) for straw, due to its high ash content


Composition pyrolysis oils via GC-MS

- Largest differences for acids (acetic and formic) and phenols
- Highest concentration of phenols in poplar oil,
 due to its thermally less stable lignin when compared to softwood?
- Highest concentration of acid and lowest conc of phenols in straw oil, due to cracking activity of innate inorganic matter
- Phenols concentrationin catalytic SW oil higher than in non-catalytic SW oil.
 Hypothesis: some cracking of lignin (oligomers) by the partial deactivated zeolite catalyst

ECN

Preliminary techno-economic assessment

Preliminary CAPEX estd:

~70 M€

TBD

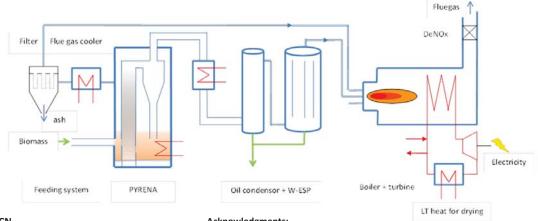
Conclusions / outlook

PYRENA suitable for (catalytic) fast pyrolysis

- First promising results in IEA Round Robin collaboration
- Recently: successful functional thermal pyrolysis and in-situ catalytic pyrolysis tests with softwood after several adaptations; bio-oil is currently analysed

Approach to produce "better" bio-oil

- Combine in-situ with ex-situ catalysis
- Recover bio-oil in fractions → ensure direct phase separation to remove water
- Use lower (< 500°C) pyrolysis temperature in combination with somewhat longer solid and vapour residence times to improve final product stability
- Use reactive riser gas (e.g. steam, H₂, CO, CO₂,..)


Techno-economics

Identify best combination feedstock - catalyst - products

Thank you for your attention!

Questions and more information: dewild@ecn.nl

ECN

Westerduinweg 3 P.O. B 1755 LE Petten 1755 The Netherlands The N

T+31 224 56 49 49

F +31 224 56 44 80

P.O. Box 1 1755 ZG Petten The Netherlands

info@ecn.nl www.ecn.nl

Acknowledgments:

This research has been performed within the Dutch CatchBio program. The authors gratefully acknowledge the support of the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Netherlands Ministry of Education, Culture and Science.

Within an IEA-T34 led (Doug Elliott) international co-operation on fast pyrolysis of biomass, bio-oils from poplar and wheat straw have been measured by Dietrich Meier of Thünen Institute of Wood Research, Germany . His contribution is gratefully acknowledged.

