

Alkmaar 4 MW bio-SNG demo

Alkmaar 4 MW bio-SNG demo

Luc Rabou, Mark Overwijk

Energy research Centre of the Netherlands (ECN)

Department of Biomass & Energy Efficiency (BEE)

Malmö

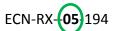
May 11, 2016

Outline

- History
- Consortium
- Technology
- Budget & time schedule

ECN's early SNG interest

HYDROGEN CONVERSION IN SUBSTITUTE NATURAL GAS BY BIOMASS HYDROGASIFICATION


M. Mozaffarian, M. Bracht, H. den Uil, and R.v.d. Woude

Netherlands Energy Research Foundation (ECN)
Business Unit Fuels, Conversion & Environment
System Assessment Group
P.O. Box 1, 1755 ZG Petten, The Netherlands
Phone: +31 224 564866, Fax: +31 224 563504
e-mail: mozaffarian@ecn.nl

4th International Conference on New Energy Systems & Conversions (NESC '99) 27-30 June 1999, Osaka, Japan

"GREEN GAS" (SNG) PRODUCTION BY SUPERCRITICAL GASIFICATION OF BIOMASS

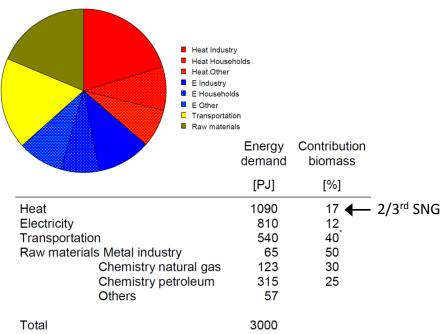
M. Mozaffarian, E.P. Deurwaarder (ECN Biomass) S.R.A. Kersten (Twente University)

Methanation of Milena product gas for the production of bio-SNG

Ewout P. Deurwaarder Harold Boerrigter Hamid Mozaffarian Luc P.L.M. Rabou Bram van der Drift

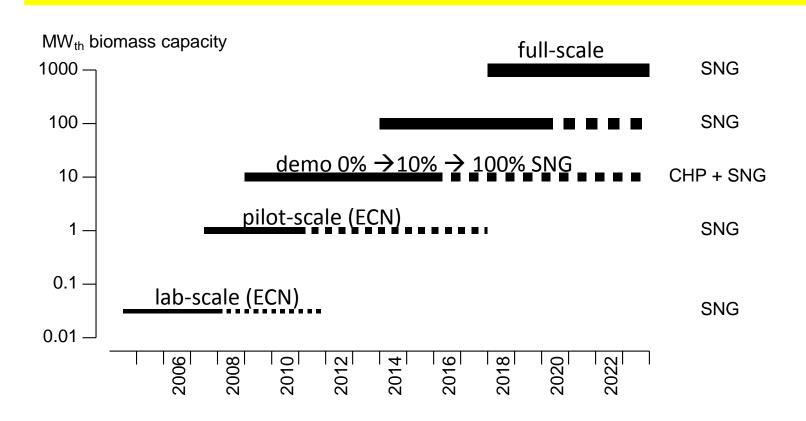
14th European Biomass Conference & Exhibition 17-21 October 2005, Paris, France

SNG enters energy scenario



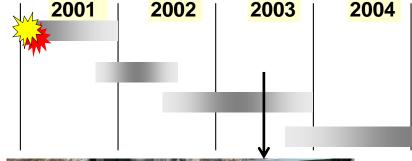
Biomass in the Dutch Energy Infrastructure in 2030

L.P.L.M Rabou and E.P. Deurwaarder ECN


H.W. Elbersen and E.L. Scott WUR, A&F

Can biomass supply 30% of energy demand in 2030? If so, how?

2005 schedule for SNG development



Foundation of the 1st consortium

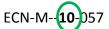
2003 Matchmaker OLGA

Conceptual Design
Proof-of-Principle (lab-scale)
Proof-of-Concept (bench-scale)
Full-scale Demonstration

Start of ECN – Royal Dahlman co-operation

2008 HVC towards Bio-SNG

TIME


1	CHP 10 MWth	PILOT PHASE	DEMO	DEMO PHASE	COMMERCIAL OPERATION DEMO		ERATION DEMO
design data							
2	SNG 50 MWth	LAB PHASE	PILO	Γ PHASE	DEMO	DEMO PHASE	COMMERCIAL OPERATION DEMO

Shifting targets

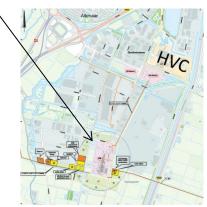
Preparations for a 10 MWth Bio-CHP
Demonstration based on the
MILENA Gasification Technology

C.M. van der Meijden P.C.A. Bergman A. van der Drift B.J. Vreugdenhil

18th European Biomass Conference & Exhibition 3-7 May 2010, Lyon, France

The technical choices for the 12 MW Bio-SNG demonstration in the Netherlands

Foundation of the 2nd consortium




Some old, some new

- HVC withdraws from consortium, ECN and Royal Dahlman stay
- Gasunie becomes main partner
- North Holland Participation Fund for Sustainable Economy joins consortium

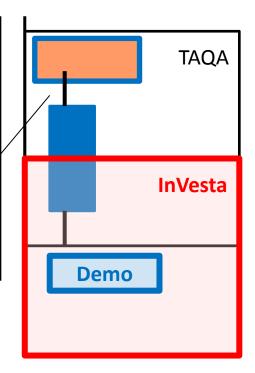
Location: near HVC, at

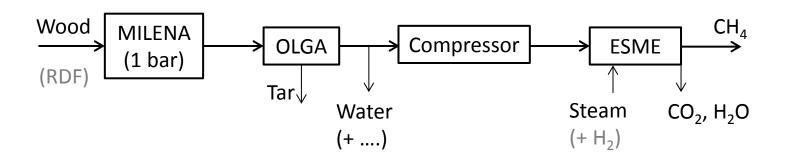
Energy Innovation Park Alkmaar

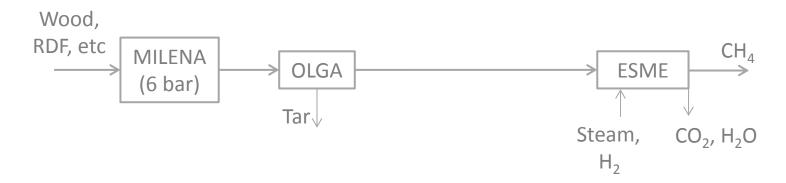
11

Co-operation with INWESTA

Expertise centre for biomass gasification







Demo technology

Demo (and future) lay-out

MILENA indirect gasifier

25 kW lab ECN

750 kW pilot ECN

4 MW India

OLGA tar removal

1 m³/h lab ECN

150 m³/h pilot ECN

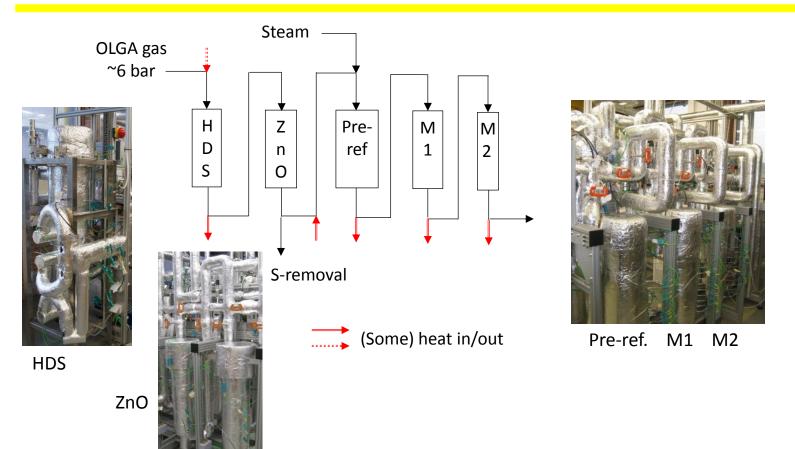
2000 m³/h France, Portugal, India

Producer gas composition (ds OLGA)

Component	Vol % (dry)	Energy %	
CO + H ₂	60	45	
CH ₄	13	29	
C ₂ H ₂	0.3	1	
C ₂ H ₄	4	15	
C ₂ H ₆	0.3	1	
C ₃ H ₆	0.1	0.6	
C ₆ H ₆	0.8	7	
C ₇ H ₈	0.1	1	
C ₈₊	~0.01		
CO ₂	19		
N_2	2		

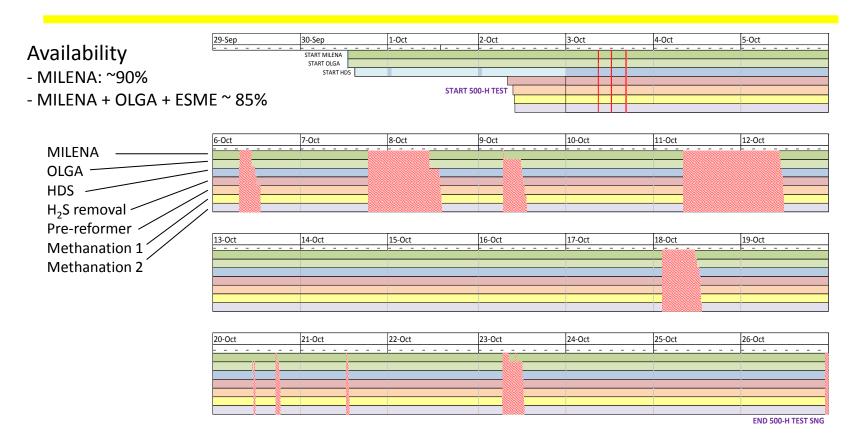
Moisture content 35 - 40%

Gas also contains contaminants, such as

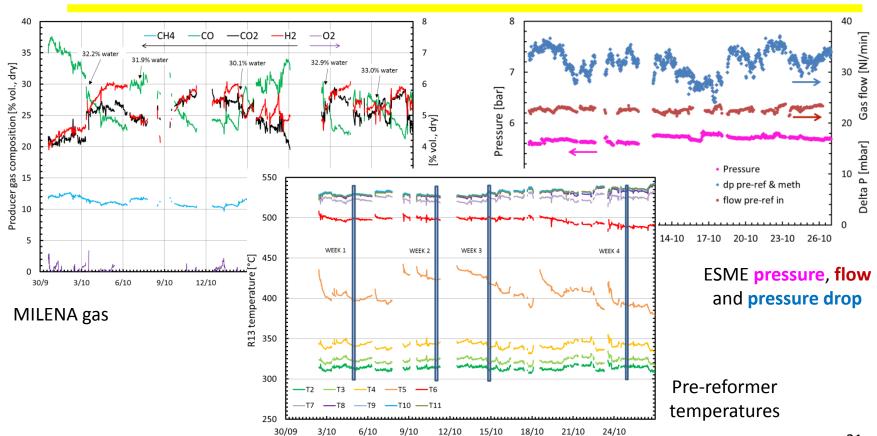


ESME considerations

- Use BTX (C₆H₆, C₇H₈, C₈H₁₀) for methane production
 - => 5-10% more efficiency
- Convert organic S-components & unsaturated C_xH_y with HDS catalyst
 - => protect methanation catalyst
- Two pressure stages: ~5 bar 1st stage => similar to future
 - pressurised gasifier
 - ~20 bar 2nd stage => low H₂ content, grid injection
- Remove most H₂O and CO₂ before compressor 2nd stage
 - => low compression duty



ESME lab test (~5 kW)



Overview 500-hour bio-SNG test

Some results of 500-hour test

Where are we (going)?

Aim of Green Gas 2.0 Consortium

- SNG demo, based on MILENA + OLGA
 ~300 m³/hr "green gas" for local gas grid
- Start of operation 2017
- Commercialization of technology at 50 100 MW scale,
 based on economic conditions in NL
- First commercial plant in 2020

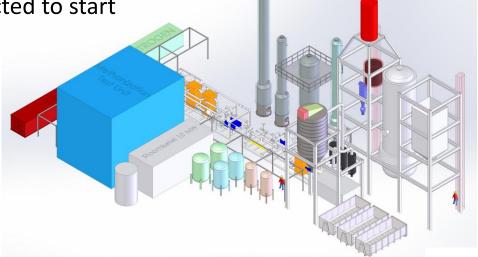
Demo bio-SNG quality (NL specs)

	G-gas	Bio-SNG low CO ₂	Bio-SNG high CO ₂
CH ₄	81.3	87.6	88.4
C_2H_6	2.9	0	0
C ₃ H ₈	0.4	0	0
C ₄₊	0.2	0	0
CO ₂	0.9	4.5	8
N_2	14.3	7.5	3.2
H ₂	-	0.3	0.3
СО	-	0.1	0.1

Heating value 100 ± 0.5% of G-gas

Wobbe index in centre of allowed band

H₂ and CO near 50% of allowed maximum



Budget & time schedule

- Budget 23 M€
- Basic engineering started in February 2016

 Detailed engineering expected to start in September 2016

Start operation in 2017

Thank you

Part of the work has been performed within projects supported by the Energy Delta Gas Research (EDGaR) programme. EDGaR acknowledges the contribution of funding agencies: The Northern Netherlands Provinces (SNN) Investing in your future, the European Fund for Regional Development, the Ministry of Economic Affairs, and the Province of Groningen.

Part of the work has been performed within the BRISK Project, which is funded by the European Commission Seventh Framework Programme (Capacities).

The work has been co-funded by Program Subsidy from the Ministry of Economic Affairs.

Biofuels Research Infrastructure for Sharing Knowledge

ECN

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten

The Netherlands The Netherlands

T +31 88 515 49 49 info@ecn.nl

www.ecn.nl

SNG specifications (NL distribution)

- Wobbe index between 43.46 and 44.41 MJ/m_n³
- $H_2 < 0.5\%$
- CO < 0.23%
- $CO_2 < 10.3\% 0.72 N_2$ (\approx G-gas)
- Water dewpoint -32°C @ 8 bar

For H-gas, CO₂ will be < 2%, and some C₂H₆ and/or C₃H₈ may be needed

Acknowledgement

"Type text here"

Abstract

"Type text here"

'Although the information contained in this report is derived from reliable sources and reasonable care has been taken in the compiling of this report, ECN cannot be held responsible by the user for any errors, inaccuracies and/or omissions contained therein, regardless of the cause, nor can ECN be held responsible for any damages that may result therefrom. Any use that is made of the information contained in this report and decisions made by the user on the basis of this information are for the account and risk of the user. In no event shall ECN, its managers, directors and/or employees have any liability for indirect, non-material or consequential damages, including loss of profit or revenue and loss of contracts or orders.'

Contents

	Summary		4
1	Title first chapter		5

CONTENT AND STRUCTURE:

- Does the title stimulate the reader to continue reading? Keep the report title short
 and concise and preferably avoid subtitles. Indication of title length (incl. subtitle):
 maximally 8 words. Advice on titles and sub headings: Informative, not business-like.
- Start each new chapter (and section) with the core message. Does this stimulate the reader to continue reading? The first sections (with core messages) of all chapters should together constitute the summary.
- Use lemmas to highlight the core message of a section. Avoid excessive use of lemmas, as this will make the text obscure. Indication: maximally 3 lemmas per page.
- Introduction: Always include objective, research question and reading instructions!
- You can also use text boxes. The text will be displayed against a light grey background with yellow lines above and below the text.
- Contents: Preferably use only two levels of headings. A third level is possible and a
 fourth level is not numbered, but printed in bold. The table of contents shows only 3
 levels.
- Lists of tables and figures are no longer included in the template.

Informative summaries on technical or scientific research need to contain information on:

- the subject,
- the objective and scope,
- the methodology, experimental (on measuring or analysis methods) or theoretical (on models or approaches, calculation methods, for example analytical or computer-based)
- the results,
- the conclusions that can be drawn about these results.

The general guidelines for summaries:

- Emphasize what is new.
- Do not repeat the title of the document in the abstract.
- Length is limited to 6000 characters (900-1200 words, half an A4 page), including spaces and symbols.

[&]quot;Type text here"

1

Title first chapter

IN ADVANCE:

- Who is my target group? Who are my readers, what is their level?
- How long will the text be? What should be and what should not be included in the report?
- What is the core message? The content needs to be of use to the reader!
- Structure: Two options: An argumentative report starts with the conclusion/key
 message and substantiates them. A traditional/scientific report starts with the
 research question and guides the reader through methodology and results to the
 answers to the research questions, in other words: the conclusions.

FORMULATION:

- Do you formulate the topic in a way that is comprehensible to all readers?
- Explain and clarify complex subjects and terminology.
- Use a clear style of writing:
 - o Short sentences, indication: maximally 18 words.
 - o Give the full meaning of abbreviations once and then use only the abbreviations.
 - o Avoid use of old-fashioned/outdated words.
 - o Avoid passive sentences as much as possible.
 - o Avoid use of brackets in the texts ().

■ ECN ECN-L--16-023 Title first chapter 7

[&]quot;Type text here"

