

ECN Install 2.0

Outline

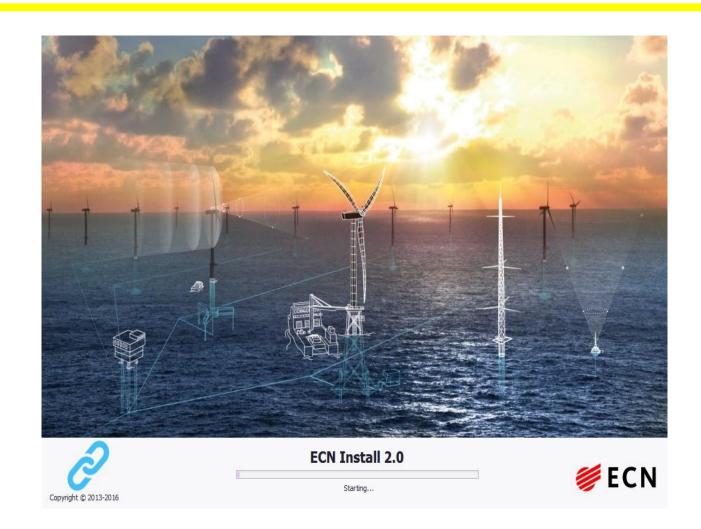
Contents of slide

- Cost modelling
- The software ECN Install
- What can it do?
- Who is it for?

Offshore Wind Energy

Cost modelling

- ECN's O&M Tool is the industry standard
- Methodology is now used for installation
- ECN Install developed in cooperation with major industry players (Van Oord, Royal IHC)



ECN Install

The Tool – dissemination of the installation process

Inputs - Outputs

Framework

Input

- Wind turbine
- Components
- Operational bases
- Vessels
- Equipment
- Climate data
- Permit restrictions
- Crew working shifts
- Fixed costs

Planning

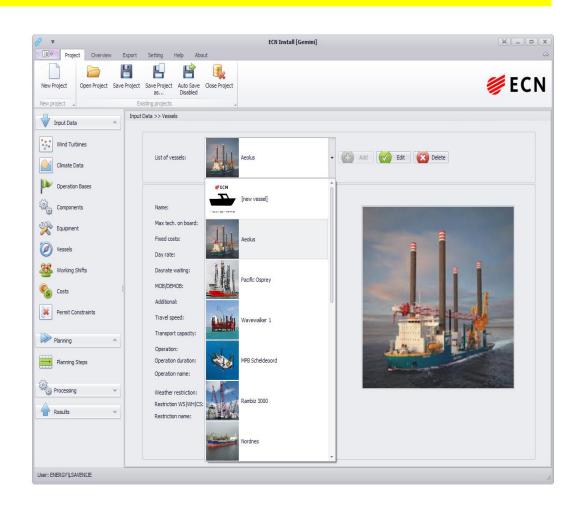
- Steps
 - (de)Mobilization
 - Loading
 - Travelling
 - Installation
- Select from input
- Planning
 - Grouping
 - Ordering
 - Iterating

Pre-processor

- Weather
- Workability

Outputs

- Time
- Resources
- Cost


ECN Install

The Tool

Input

- Wind turbine
- Components
- Operational bases
- Vessels
- Equipment
- Climate data
- Permit restrictions
- Crew working shifts
- Fixed costs

ECN Install

The Tool

Planning

- Steps
 - (de)Mobilization
 - Loading
 - Travelling
 - Installation
- Select from input
- Planning
 - Grouping
 - Ordering
 - Iterating

The user of ECN Instaccuracy of the results.

			ECN Install [Gemini]		× = 0
	New Project Open Project Save Project Save Project Auto Saire Close Project				 €CN
anning >>	> Planning Steps				
		Sequence Group Copy Copy	Step Paste	Expand all Collapse all	
Sequence	- Name	Туре	Iterations	Line Start	ID
Scou	ır Protection	Sequence	15	1-6-2015	1
Foun	ndations (Aeolus)	Sequence	30	30-6-2015	2
→ Lo	oad monopiles	Group	3		2.1
	Load MP	Step	1		2.1.1
+ Lo	oad transition piece	Group	3		2.2
	Load TP	Step	1		2.2.1
▼ T	ravel to wind farm	Group	1		2.3
	Travel to wind farm	Step	1		2.3.1
→ Ir	nstallation MP	Group	3		2.4
	Anchor and position vessel	Step	1		2.4.1
	Jack up	Step	1		2.4.2
	Upend and position MP	Step	1		2.4.3
	Piling MP	Step	1		2.4.4
	Lift and Stabilize TP	Step	1		2.4.5
	Bolting	Step	1		2.4.6
	Jack down	Step	1		2.4.7
	Travel to next turbine	Step	1		2.4.8
→ T	ravel back to wind farm	Group	1		2.5
Infie	eld Cables	Sequence	1	1-7-2015	3
Ехро	ort Cables	Sequence	1	1-3-2015	4
Foun	ndations (Pacific Osprey)	Sequence	20	25-7-2015	5
► Subs	stations	Sequence	1	1-8-2015	6
Turb		Sequence			
Turb	ines (Pacific Osprey)	Sequence		15-2-2016	

Installation modelling

Calculating impact of delays - scenarios

The model calculates project delays caused by:

- Permit or contractual restrictions
- Lack of resources
- Working shifts
- Bad weather
- Harbour locks

Outputs

- Planning with delays
- Breakdown of resources and costs
- Export results to Graphs, MS Excel and MS Office Gantt chart

Possible Outputs

Results – planning with delays (export Gantt chart)

ID	Task Name	Duration	2015	1
			Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jur	n Jul
1	Scour protection	29.38 days		
2	Foundations - Aeolus	83.75 days		
3	Infield cables	105.08 days		
4	Export cables	165.75 days		
5	Foundations - P. Osprey	55.83 days		
6	Substations	11 days		
7	Turbines - Aeolus	106.4 days		
8	Turbines - P. Osprey	106.4 days		

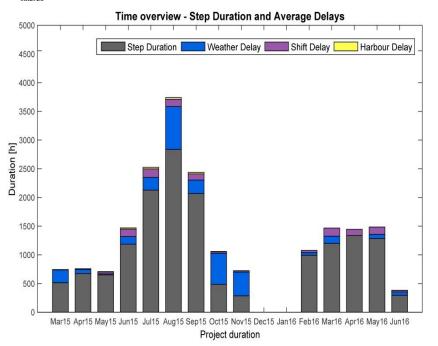
ID	Task Name	Duration	2015
8			Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Ju
1	Scour protection	35.03 days	
2	Foundations - Aeolus	106.52 days	
3	Infield cables	140.65 days	
4	Export cables	193.3 days	
5	Foundations - P. Osprey	71.36 days	
6	Substations	22.5 days	
7	Turbines - Aeolus	131.23 days	
8	Turbines - P. Osprey	127.68 days	
Proie	ct: Gemini	.i	Weather Delay ////////////////////////////////////
Date: October 26, 2015 9:49 AM			Shift Delay

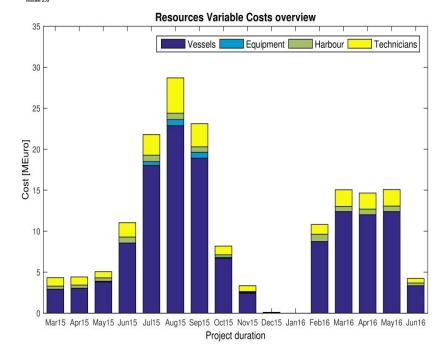
Possible Outputs

Results - graphs

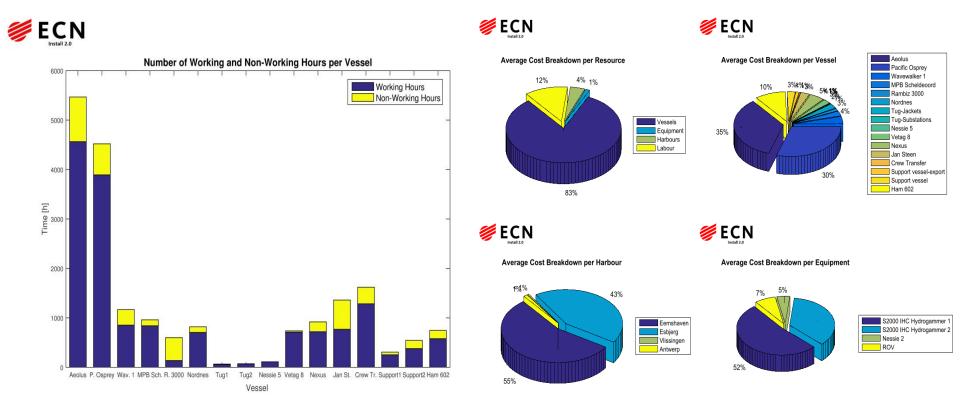
Select Graphs to produce

Time Graphs: All None	Cost Graphs: All None	Resource Graphs: All None
Average Delays Breakdown per Delay Type	Average Cost Breakdown for each Vessel (n)	☐ Number of Trips per Vessel
Average Delays Breakdown per Step Type	Average Cost Breakdown per Vessel	Number of Outgoing Trips per Harbour
☐ Total Delays per Simulation year	Average Cost Breakdown for each Equipment (n)	
Delays overview - Worst, Average Best scenarios	Average Cost Breakdown per Equipment	Vessel Utilization Overview
Average Delays overview per Sequence of steps	Cost Breakdown per Component	Eqipment Utilization Overview
☐ Time overview: Step Duration and Average Delays	Average Cost Breakdown per Harbour	Average Man-hours Overview
	Average Cost Breakdown per Resource	
	Resources Cost per Simulation year	
	☐ Variable costs overview - Worst, Average Best scenarios	
	Average Total Cost comparison: PreProcessed and Post-Pr	ocessed


The user can create 22 standard graphs using ECN Install

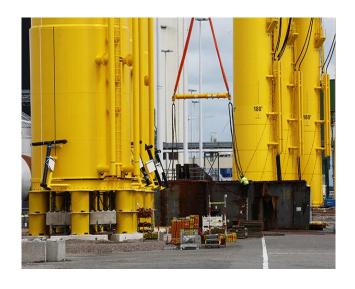

Example Outputs

Results - graphs



Example Outputs

Results - graphs



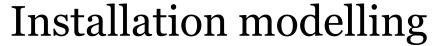
Installation modelling

What can it do?

- Design and optimize installation strategy for offshore wind farm
- Determine project planning, delays, costs and risks
- Monitor progress during installation

Installation modelling

What can it do?


- Commercial proof of new and innovative installation concepts
 - Installation methods
 - Support structures & wind turbines
 - Vessels and equipment

Source: Royal IHC

Source: Bugsier and Wärtsilä

Where are biggest LCOE gains to be achieved?

Potential user	Added value
Developers	Procurement strategy, marshalling harbour strategy, procurement evaluation
Contractors BOP / WTG	Execution strategy, logistical strategy, workability analysis
Investors	Risk scenarios, contingency levels
Vessel & Equipment designers	Added value of a new design at site specific circumstances
Port authorities	Added value of the port location for project logistics

