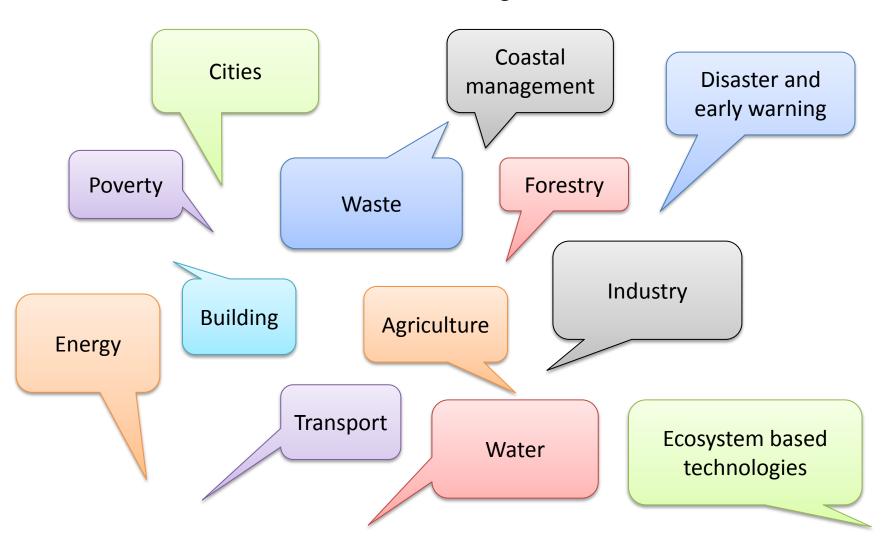
Introduction to Mitigation Technologies for Industry

The Climate Technology Centre and Network

- Operational arm of the UNFCCC Technology Mechanism
- Consortium of organizations from all regions
- Mission to stimulate technology cooperation and enhance the development and deployment of technologies in developing countries
- Technologies include any equipment, technique, knowledge and skill needed for reducing greenhouse gas emissions and for adapting to climate change effects
- Core services include:
 - Technical assistance to developing countries
 - Knowledge platform on climate technologies
 - Support to collaboration and partnerships



CTCN Webinar Series

An introduction to climate technologies...

Audio Options

Two Options for Audio (select audio mode):

1. Listen through your computer

 Please select the "mic and speakers" radio button on the right hand audio pane display

2. Listen by telephone

 Please select the "telephone" option in the right-hand display, and a phone number and PIN will display.

3. Please mute your audio device

4. Technical Difficulties:

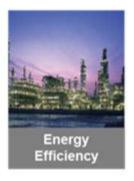
Contact the GoToWebinars Help Desk: 888.259.3826

Interaction

- We invite you to introduce yourself
 - Select and type into the "chat" pane on your screen
- To ask a question (Q&A after presentation)
 - Select the "questions" pane on your screen and type in your questions
- The presentations will be made available after the webinar

Who we are – ECN

Energy research Centre of the Netherlands


Knowledge and technology for a sustainable energy system

Experience working in: Argentina, Brazil, Columbia, Ghana, Indonesia, Kenya, Kuwait, Mexico, Mozambique, Pakistan, South Africa, Thailand and others

Global Sustainability Group

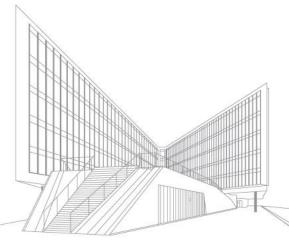
- Climate and energy strategies
- Developing country partners
 - 1 Scoping & Prioritizing
 - 2 Policy and Planning
 - Renewable Energy
 Deployment
 - Increased Policy
 Effectiveness

Who we are - Presenters

Arjan Plomp works as a scientist at ECN Policy Studies. He graduated in chemistry and holds a PhD in catalysis. His work involves the energy use and emissions in the industry sector. He is involved in various projects, e.g. design of Dutch energy outlooks and scenarios, technology explorations and other projects with an industrial focus.

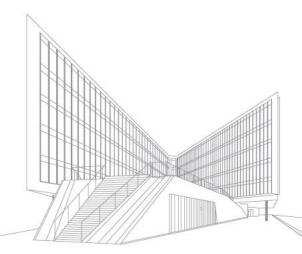
Lachlan Cameron is a policy advisor and technical analyst specialising in international climate policy, renewable energy support and themes such as nationally appropriate mitigation actions (NAMAs) and intended nationally determined contributions (INDCs).

Ad Seebregts is a senior researcher at ECN. His key qualifications are power generation energy technologies, cost assessments, energy system modelling and scenario studies, uncertainty analysis, decision analysis, monitoring, risk and reliability analysis. His current projects are related to the power generation sector in the Netherlands and Europe.

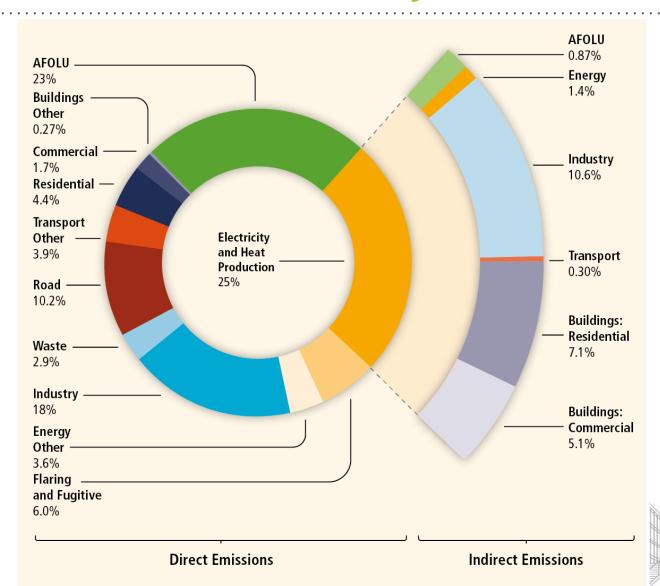


Objective of this webinar

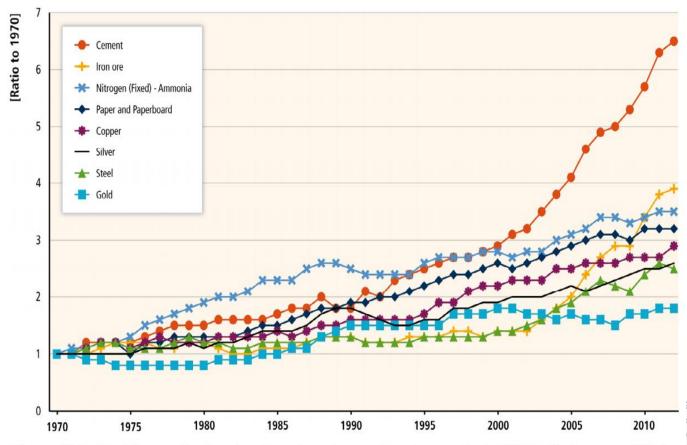
- Show relevance of industrial energy use and emissions
- Introduction to energy efficient technologies in industry by subsector
- Policies available to implement energy efficiency measures in industry
- References for more information



Contents


- 1. Introduction
 - A. Emission trends in industry
 - B. Mitigation options across sectors
- 2. Subsector-specific measures and technologies
 - A. Iron and Steel
 - B. Cement
 - C. Chemicals and Fertilizers
 - D. Pulp and Paper
 - E. Non-ferrous Metals
 - F. Food Processing
 - G. Textiles
- 3. Policy recommendations
- 4. Case studies
- 5. IPCC conclusions

A. Emission trends in industry



Source: IPCC, 2014, AR5

A. Emission trends in industry

 World production trends of mineral extractive industries, manufacturing, and services, have grown steadily in the last 40 years

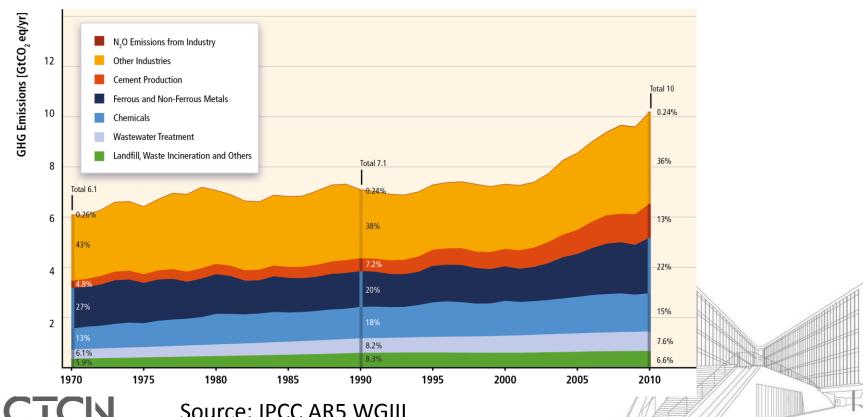


Figure 10.3. World's growth of main minerals and manufacturing products (1970=1). Sources: (WSA, 2012a; FAO, 2013; Kelly and Matos, 2013).

Source: IPCC AR5 WGIII

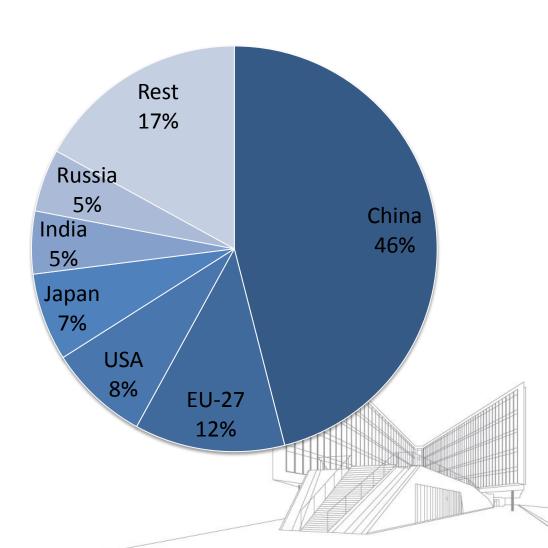
A. Emission trends in industry

- How much does the industry sector contribute to Green house gas emissions?
 - ~30%, including indirect emissions
- GHG grew from 10.4 GtCO2eq in 1990 to 15.5 GtCO2eq in 2010.
- Emissions from the industry mostly caused by material processing
 Direct Emissions

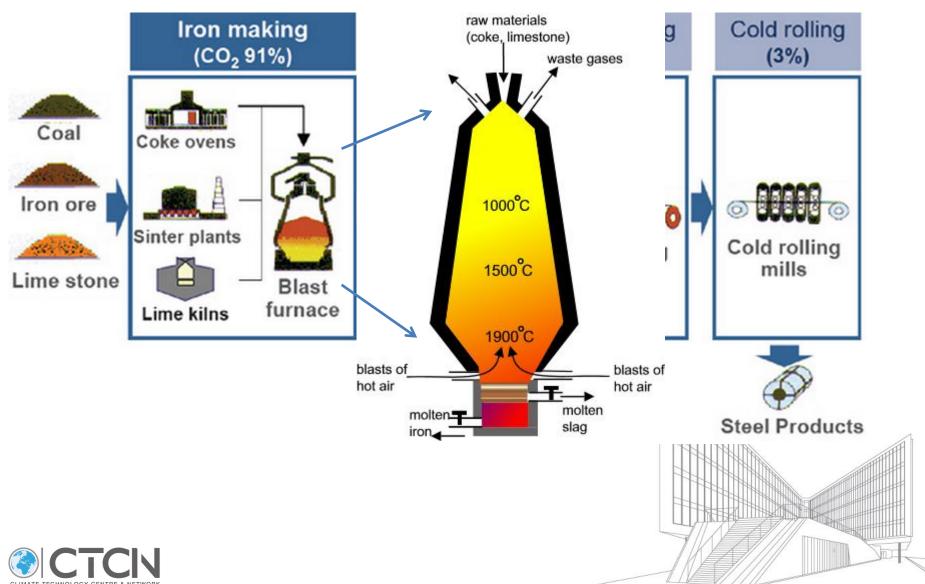
B. Mitigation options across sectors

Mitigation opportunities in the IPCC report are categorized as follows:

Energy efficiency	Emissions efficiency and fuel switching
less energy to achieve the same outputs	lower emissions while achieving the same outputs
Material efficiency	Reduced product and service demand
less material demands for the same	lowering overall demand for outputs



A. Subsector: Iron and Steel

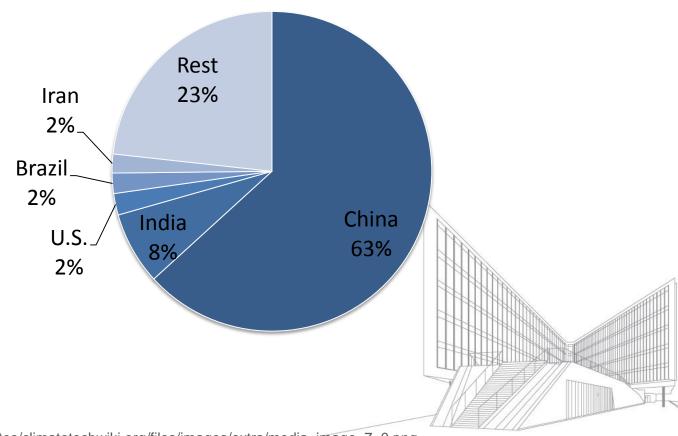

- 5% of global emissions
- Processes very similar
- 1/3 of steel from scrap

World steel production

A. Subsector: Iron and Steel

A. Subsector: Iron and Steel

Energy efficiency	Emissions efficiency and fuel switching
 Heat and energy recovery 1 use of top gas turbine 2 re-use of blast furnace gas Improved fuel delivery through pulverized coal injection Improved furnace design and process controls Reduced number of temperature cycles 	 Electric arc steel making (mainly secondary steel) Natural-gas based production routes Top gas recycling
Material efficiency	Reduced product and service demand
Significant potential during production of steel products	Amount of steel in buildings and cars



B. Subsector: Cement

World-wide cement production on the rise

World cement production

B. Subsector: Cement

- Calcination in kiln: major energy-consuming and emitting process.
- Limestone, clay and sand heated to 1450°C via fuel combustion and gives ~40% of emissions

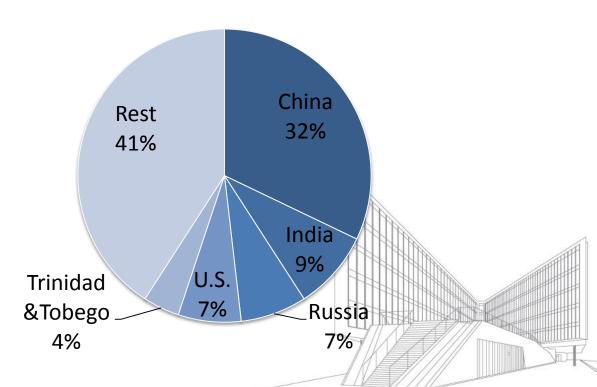
B. Subsector: Cement

Energy efficiency	Emissions efficiency and fuel switching
 Optimization of the kiln in size and capacity utilization. Preheaters via 4 to 6-stage cyclones 	Coal standard fuel; fuel switch to e.g. biomass wastes or natural gas.
Material efficiency	Reduced product and service demand
 Replace cement with concrete Decrease clinker percentage in cement by using additives such as blast furnace slag or fly ash from power plants 	 Extend lifespans of buildings and infrastructure Reduced demand for building and infrastructure services

C. Subsector: Chemicals & Fertilizers

- Main emitters: Ethylene, ammonia, nitric acid, adipic acid, caprolactam
- Ethylene production on the rise outside OECD

	Ethylene can	acity, tpy	Chan	ge
	Jan. 1, 2013	Jan. 1, 2012	tpy	96
Asia-Pacific	43,101,000	42,631,000	470,000	1.10
Eastern Europe	7,971,000	7,971,000	_	_
Middle East, Africa	26,007,000	24,557,000	1,450,000	5.90
North America	35,035,926	34,508,000	527,926	1.53
South America	6,383,500	6,383,500	_	- N
Western Europe	24,904,000	24,904,000	_	


Biggest companies (2012) BASF, Bayer, Braskem, Celanese/Ticona, Arkema, Dow, DuPont, Eastman Chemical Company, Evonik Industries, ExxonMobil, Formosa Plastics, Givaudan, INEOS, LANXESS, LG Chem, LyondellBasell, Mitsubishi, Monsanto, PPG Industries, SABIC Shell, Shin-Etsu, Sinopec, Solvay, Sumitomo Chemical and Wanhua.

C. Subsector: Chemicals & Fertilizers

- Fertilizer types: Nitrogen fertilizers, Phosphates, Potassium, Compound fertilizers, Organic fertilizer, Other elements: calcium, magnesium, and sulfur.
- Ammonia (NH₃) most common fertilizer: N₂ + 3H₂ → 2NH₃
- Energy intensive process

Ammonia production

Further reading: http://en.wikipedia.org/wiki/Haber_process

C. Subsector: Chemicals

Energy efficiency	Emissions efficiency and fuel switching
 Upgrade steam cracking plants to BAT More selective coils giving higher ethylene yield Optimize Transfer Line Exchangers (TLE's) → heat exchanger Increase overall fuel efficiency (typically 92 - 94 %) 	Fuel switching: from liquid fuel to gas
Material efficiency	Reduced product and service demand
 Material efficiency has little attention Plastics: pure waste streams for recycling 	Reduction of plastics use (e.g. less packaging)

C. Subsector: Fertilizers

Energy efficiency	Emissions efficiency and fuel switching
 Advanced conventional processes Reduced primary reforming CO₂ removal with improved solvents Indirect cooling of the ammonia reactor Use of gas turbine to drive process air compressor 	 Common ammonia production: Haber-Bosch process from natural gas Alternative: ammonia production using hydrogen from water electrolysis (using renewable electricity)
Material efficiency	Reduced product and service demand
 Efficient application of fertilizer on agricultural land: test need of crops for nitrogen or apply N-sensor for variable fertilizer application 	Use organic fertilizers instead of industrially produced fertilizer

D. Subsector: Pulp and Paper

Separation of useful fiber

Pulping

Adjusting properties

Screening

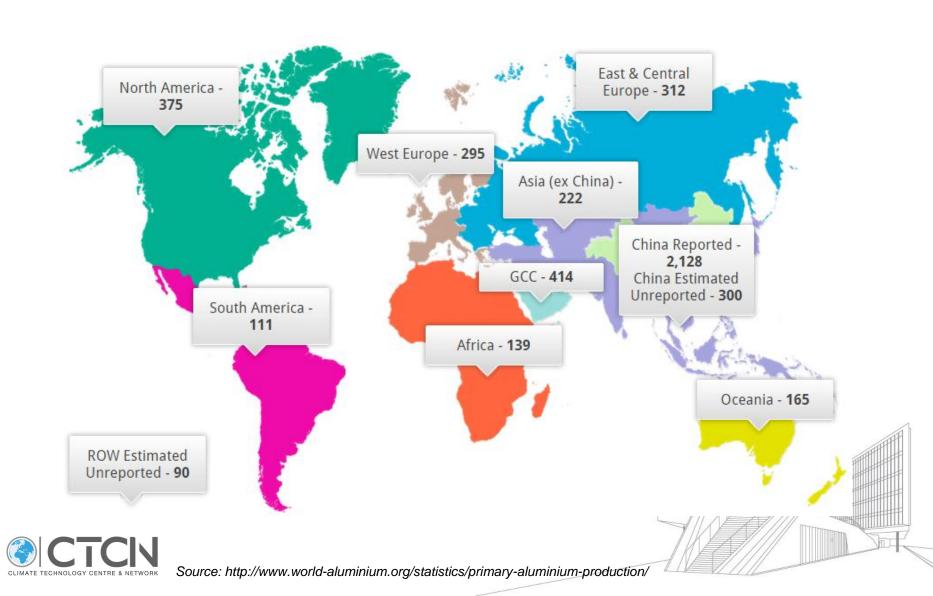
Pressing and drying

- Over half the energy used for drying
- The use of additives, an increased dew point, and improved heat recovery

→ 32% reduction

D. Subsector: Pulp and Paper

Emissions efficiency and fuel switching
 Use biomass as a fuel instead of fossil fuels Emerging technology: black liquor gasification (waste-to-energy)
Reduced product and service demand
Substitute paper



Subsector: Non-ferrous Metals

E. Subsector: Non-ferrous Metals

Total for Nov 2014: 4,551 thousand metric tonnes of aluminium

E. Subsector: Non-ferrous Metals

Energy efficiency	Emissions efficiency and fuel switching
 Copper: optimise heat consumption Regenerative burners Heat exchangers Etc Aluminum: Automatic alumina point feeding and control of electrolysis; Improved burner for incineration of PAHs and other hydrocarbons in pot exhaust gas; 	 Emerging technique: inert anodes for aluminum production PFCs (such as CF4; having high GWP) in aluminium or SF6 in magnesium
Material efficiency	Reduced product and service demand
Yield in forming and fabrication can be improved by innovationRecycle	ReuseMaterial substitution

F. Subsector: Food Processing

Some of the major sectors:

- Oil and fat industry
- Sugar industry
- Dairy industry
- Beer and beverages industry
- Preservation, e.g. vegetables
- Fodder/animal-feedstock production

F. Subsector: Food Processing

Energy efficiency

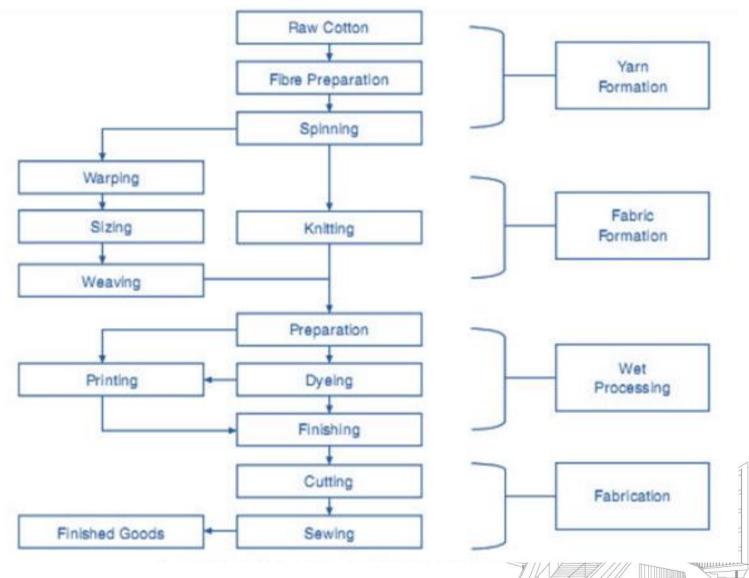
- CHP, optimize drying and evaporation methods, reversed osmosis
- Better insulation and reduced ventilation in fridges and freezers
- · Cooling before freezing
- Re-use heat of e.g. fat hardening
- Two-stage drying for milk powder

Emissions efficiency and fuel switching

- Switch from heavy fuel oil to natural gas and/or renewable energy sources
- Lower-emission modes of transport
- Food waste and/or by-products may be source of biogas via anaerobic digestion

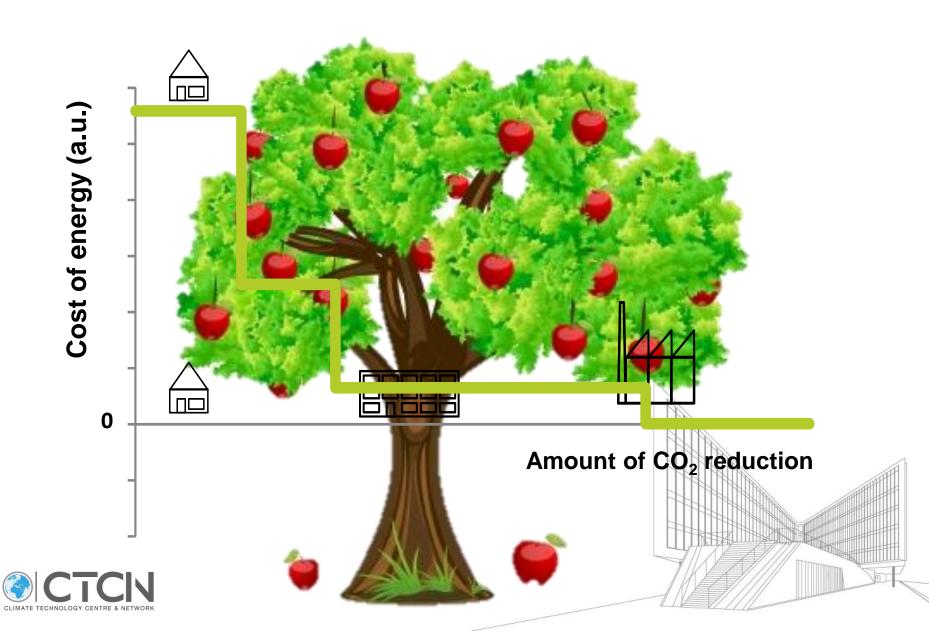
Reduced product and service demand

- Reduce spill of food (e.g. optimize logistics)
- Transport distances, processed food, cooling demand
- Replace meat and dairy products by low-emission products (Meat and dairy products are source of over 1/2 of total food emissions)



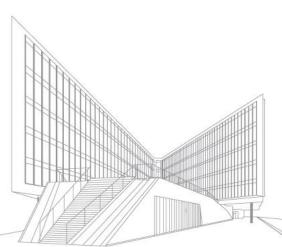
G. Subsector: Textiles

Cotton production


G. Subsector: Textiles

Energy efficiency	Emissions efficiency and fuel switching
 Insulation of High Temperature (HT) machines, e.g. dyeing Airflow jet dyeing machines Optimize washing and rinsing (e.g. counterflow washing and heat recovery) 	Switch from heavy fuel oil to natural gas and/or renewable energy sources
Material efficiency	Reduced product and service demand
Water consumption and energy consumption seem to be related. Efficiency helps on both compartments at the same time	It is difficult to limit textile demand. Reuse or recycling of textiles is a good option.

3. Policy recommendations



3. Policy recommendations

Concepts for instruments


Barriers	Motivation		Possibility		
Motivation	Price	Subsidize	Regulate	Facilitate	Inform
Not cost-effective					
Not important					
Other disadvantages					
Possibility					
No funds					
No knowledge					

3. Policy recommendations

Source: IPCC, 2014, AR5

4. Case studies

FaL-G Brick technology in Bangladesh: ground blend of fly ash, lime and gypsum yielding a matrix as strong as ordinary cement

- Climate-friendly technology
- Eliminates carbon emissions
- + Reduce air pollution from fly ash (coal power plants)

(Source: IIP http://www.iipnetwork.org/Bangladeshi_Brick_Rtable#sthash.7la6LQzH.dpuf)

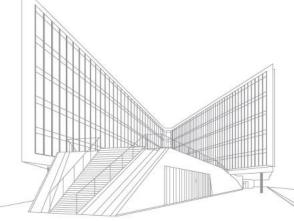
ArcelorMittal Saldanha Works in South Africa (IEE):

by implementing an Energy Management System, this steel plant saved roughly R90 million within the 2011 period, against a minimal capital investment of R500,000

- Reduce CO2 emissions
- Low investment costs
- High energy and electricity cost savings

(Source: NCPC/UNIDO http://ncpc.co.za/media-room-ncpc/case-studies-and-success-stories/27-case-studies/arcelormittal-saldanha-works-2013)

5. Conclusions


Several emission-reducing options are cost-effective and profitable

Varies regionally and per site-specific situation

Mitigation measures are often associated with co-benefits

 Competitiveness, business opportunities, environmental compliance, health benefits and waste reduction

For more information

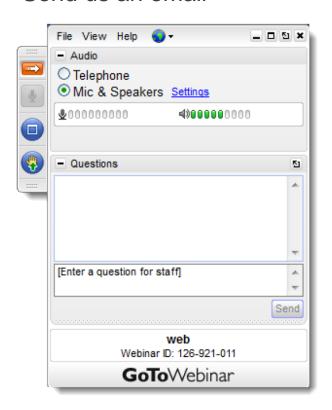
 IPCC Workgroup III "Climate Change 2014: Mitigation of Climate Change" Chapter 10: Industry

- MURE ODYSSEE database, overview of general energy efficiency parameters and policies in the EU: http://www.odyssee-mure.eu/
- Best Available Techniques Reference Documents (BREF):
- http://eippcb.jrc.ec.europa.eu/reference/
- Industrial Efficiency Technology Database (IETD): http://ietd.iipnetwork.org/

Thank you for participating in this webinar

Contact:

Arjan Plomp: plomp@ecn.nl


Ad Seebregts: seebregts@ecn.nl

Lachlan Cameron: cameron@ecn.nl

Agathe Laure: Agathe.Laure.affiliate@unep.org

Questions and Answers

- Please type your question into the "Questions" pane and click "Send"
- Kindly limit yourself to one specific short question
- Kindly refrain from giving broad statements
- Send us an email

