

## Multiphase Structured Reactors





# Multiphase Structured Reactors

Edward van Selow, Arend de Groot, Raghavendra Sumbharaju, Jurriaan Boon

EPIC5, Nice 1<sup>st</sup> October, 2015

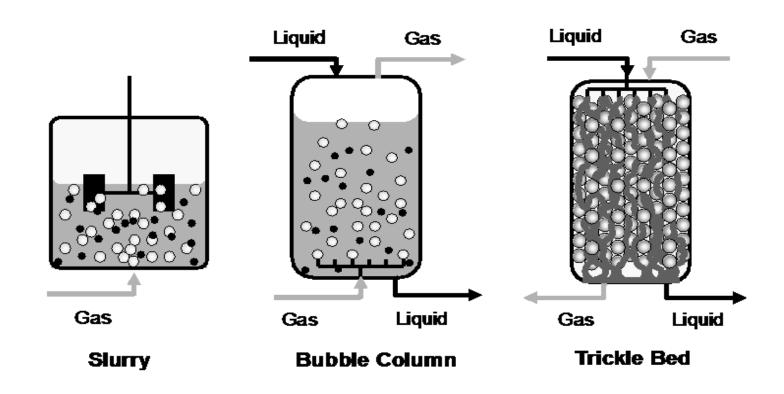
www.ecn.nl



# Our PI solutions for separations

| limitation                | $\rangle$ | solution                            | our technology |  |
|---------------------------|-----------|-------------------------------------|----------------|--|
| heat transfer limited     |           | heat integrated separation          | HIDiC          |  |
| low temperature           |           | H <sub>2</sub> separation membranes | Hysep          |  |
| relative volatility       |           | pervaporation<br>membranes          | Hybsi          |  |
| temperature swing solvent |           | pressure swing sorbent              | Alkasorb Plus  |  |




## Our PI solutions for reactors

| limitation           | Solution            | example                  |  |
|----------------------|---------------------|--------------------------|--|
| mass & heat transfer | structured reactors | TFR, SMR                 |  |
| intrinsic kinetics   | advanced catalysts  | syngas, N <sub>2</sub> O |  |
| thermodynamic        | separation enhanced | SEWGS, H2MR              |  |

Visit our Booth 0.21



## Conventional Gas-Liquid Reactors



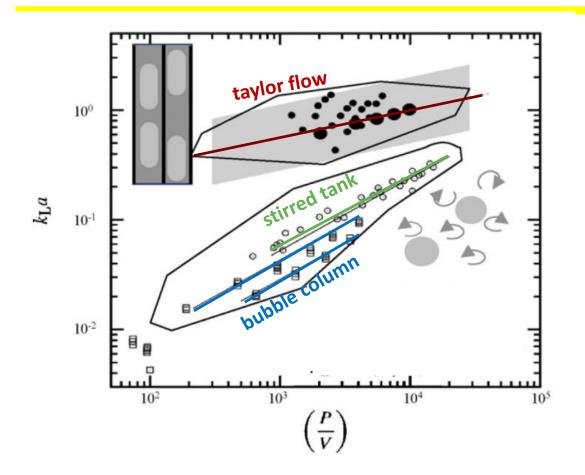


## **Drivers for Structured Reactors**

increased mass transfer

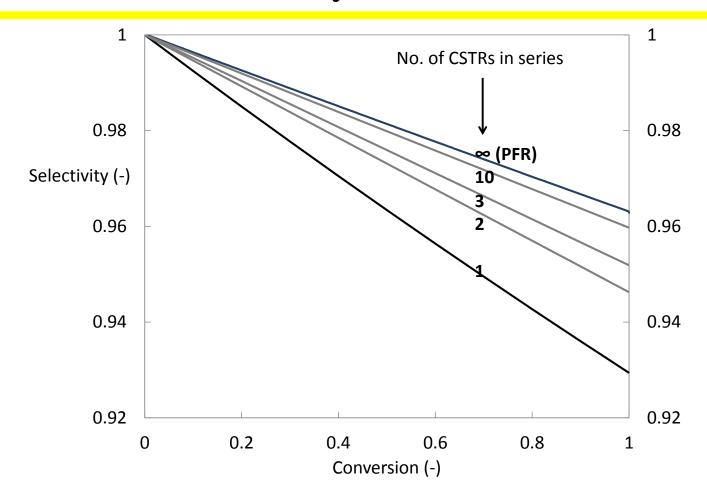
all reactant undergoes same processing

higher conversion


higher selectivity

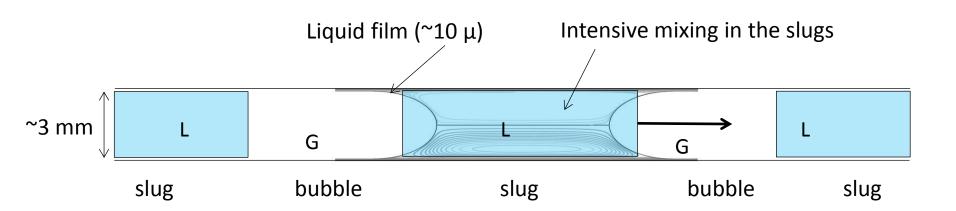
scale out vs scale up

predictable performance




## Mass Transfer Highest for TFR




Adapted from: Kreutzer et al. *Catal Today* 111 (2006) 111.

# Effect of Residence Time Distribution **ECN** (RTD) on selectivity





## Taylor flow reactor (TFR)

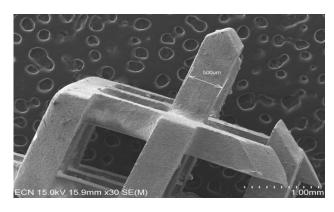




## Taylor Flow Reactor (TFR)








Single pass reactor



## Static Mixer Reactor (SMR)











## The Project Objectives

To design a flexible gas/liquid reactor based on widely accepted technology ... using structured elements within the tubes of the reactor to achieve the required mass and heat transfer properties.



To accelerate the introduction of structured reactors in industry



### The model reaction

$$B3 + H_2 \rightarrow B2 \qquad (r_1)$$

$$B2 + H_2 \rightarrow B1 \qquad (r_2)$$

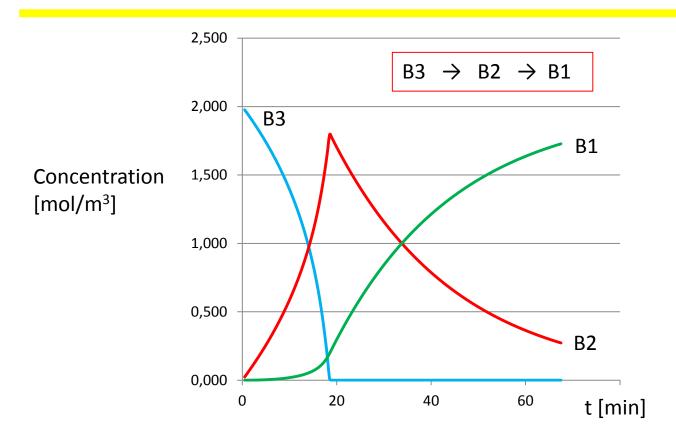
B3: 2-butyne-1,4-diol

B2: 2-butene-1,4-diol

B1: 2-butane-1,4-diol

#### Kinetic model

Chaudhari et al. Appl. Catal. 1987, 29, 141


$$r_1 = \frac{w k_1 C_{H2}}{1 + K_{B3} C_{B3}^2}$$

$$r_2 = \frac{wk_2C_{H2}C_{B2}}{1 + K_{B3}C_{B3}^2}$$

 $C_i$ - concentration of i on the catalyst surface, kmol/hr  $k_1, k_2$  - reaction rate constant, m<sup>6</sup>/(kmol·s·kg<sub>Pd</sub>)  $K_{B3}$  - adsorption constant of B3, m<sup>3</sup>/kmol w – catalysts loading, kg<sub>Pd</sub>/m<sup>3</sup>



# Sequential production of B2 and B1





#### The model reaction

$$B3 + H_2 \rightarrow B2 \qquad (r_1)$$

$$B2 + H_2 \rightarrow B1 \qquad (r_2)$$

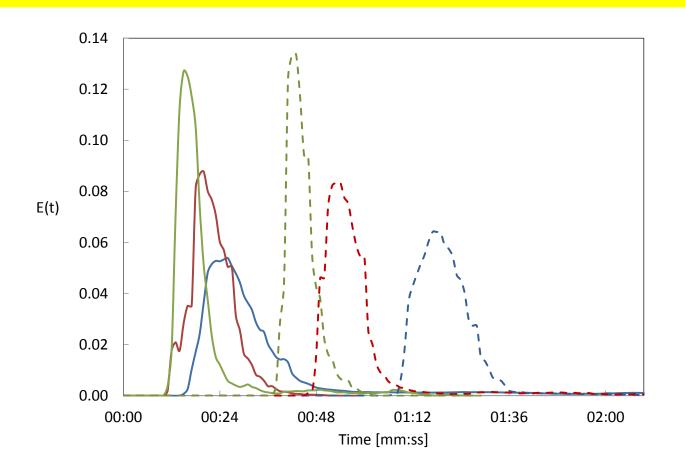
B3: 2-butyne-1,4-diol

B2: 2-butene-1,4-diol

B1: 2-butane-1,4-diol

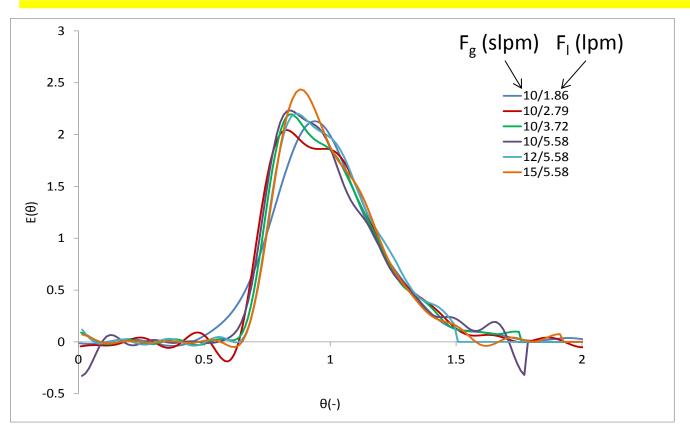
#### Kinetic model

Chaudhari et al. Appl. Catal. 1987, 29, 141


$$r_1 = \frac{w k_1 C_{H2}}{1 + K_{B3} C_{B3}^2}$$

$$r_2 = \frac{wk_2C_{H2}C_{B2}}{1 + K_{B3}C_{B3}^2}$$

 $C_i$ - concentration of i on the catalyst surface, kmol/hr  $k_1, k_2$  - reaction rate constant, m<sup>6</sup>/(kmol·s·kg<sub>Pd</sub>)  $K_{B3}$  - adsorption constant of B3, m<sup>3</sup>/kmol w – catalysts loading, kg<sub>Pd</sub>/m<sup>3</sup>




## Nearly ideal plug flow in Taylor Flow Reactor





# SMR: measured RTD $(F_g, F_L)$



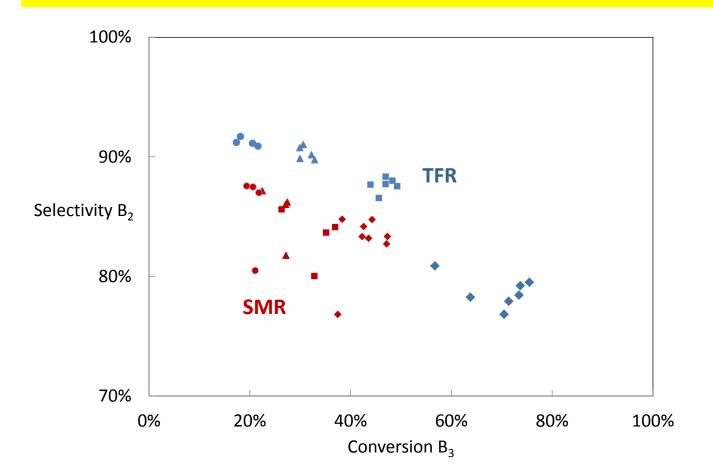
T ambient P atmosheric 30% IPA



## Pe and N

|                            | $\sigma_{213\text{smx}}^2/t_{213\text{smx}}^2$ | N  | Pe | $D (m^2/s)$          |
|----------------------------|------------------------------------------------|----|----|----------------------|
| 1.86 ml/min L, 10 ml/min G | 0.0474                                         | 21 | 41 | 1.4·10 <sup>-4</sup> |
| 2.79 ml/min L, 10 ml/min G | 0.0331                                         | 30 | 59 | 1.7·10 <sup>-4</sup> |
| 3.72 ml/min L, 10 ml/min G | 0.0441                                         | 23 | 44 | 2.8·10 <sup>-4</sup> |
| 5.58 ml/min L, 10 ml/min G | 0.0236                                         | 42 | 84 | 1.9·10 <sup>-4</sup> |
| 5.58 ml/min L, 12 ml/min G | 0.0356                                         | 28 | 55 | 3.1·10 <sup>-4</sup> |
| 5.58 ml/min L, 15 ml/min G | 0.0380                                         | 26 | 52 | 3.3·10 <sup>-4</sup> |

The RTD for N ideally mixed tanks in series is given by (Swaaij & Westerterp):


$$E(\theta) = \frac{N^N \theta^{N-1}}{(N-1)!} e^{-N\theta}$$

and its variance is:

$$\frac{\sigma^2}{t^2} = \frac{1}{N}$$



## Results: SMX vs TFR



 $x_{B3} = 3\%$ T = 22 °C P = 15 bar



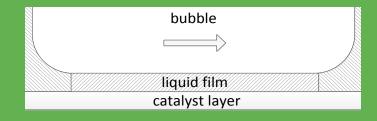
### Two reactor models for TFR

#### Kinetic model for main and side reactions

Chaudhari et al. Appl. Catal. 1987, 29, 141

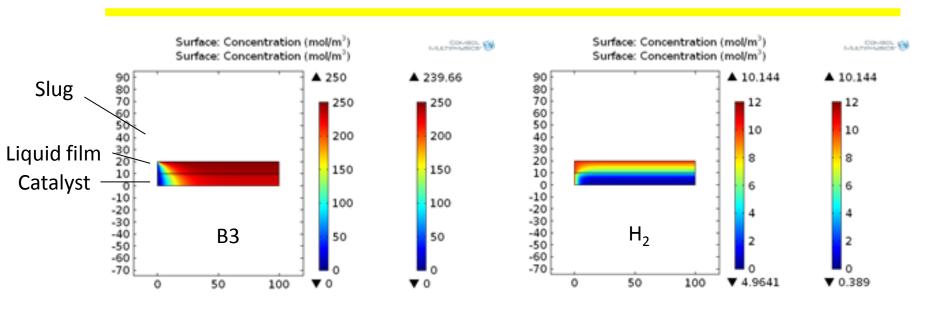
#### Pseudo-homogeneous reactor model

Assumes uniform liquid concentrations in the film in a unit cell


Overall mass transfer gas-liquid-solid

$$k_{GLS}a_{GLS} = k_{GS}a_{GS} + \left(\frac{1}{k_{GL}a_{GL}} + \frac{1}{k_{LS}a_{LS}}\right)^{-1}$$

Kreutzer et al. *Chem. Eng. Sci.* **2005**, *60*, 5895. Van Baten & Krishna *Chem. Eng. Sci.* **2004**, *59*, 2535. Van Baten & Krishna *Chem. Eng. Sci.* **2005**, *60*, 1117. Bubble-and-slug reactor model

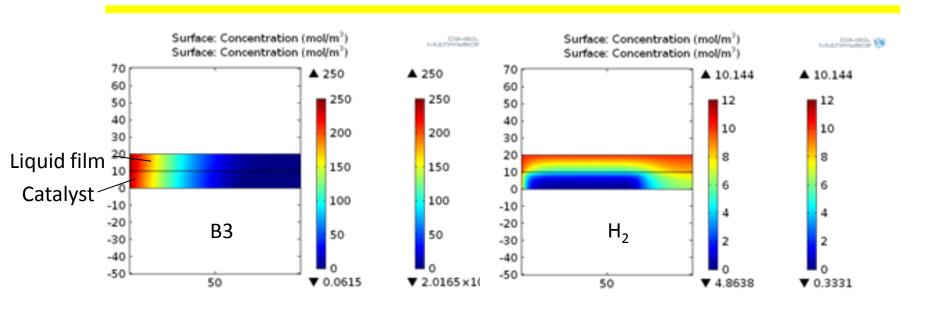

2D axisymmetric diffusion model for liquid film and catalyst layer

Modelling local depletion and replenishment during passing of bubble and slug (transients)





## Passing slug




B3 is readily replenished

H<sub>2</sub> concentration low but not depleted



## Passing bubble



Even at high B3 concentration in the bulk, B3 present in liquid film and catalyst layer is fully converted during the passage of a bubble



## Summary

- The Taylor flow reactor and static mixer reactor can outperform conventional reactors for gas-liquid reactions, due to their intensified mass transfer capabilities and low axial mixing.
- The experimental Taylor flow reactor shows plug flow behaviour.
- Measured selectivities for a model reaction in a Taylor flow reactor and in a static mixer reactor were 80 to 90%.
- Observed performance for TFR better than for SMR, due to higher mass transfer and closer to plug flow.
- Observed conversions and selectivities for a model reaction were lower than expected (95 - 96%).
  - For the TFR, modelling suggests that depletion of B3 could be the cause. Performance is expected to improve for smaller slugs.



## Thank you for your attention

The project received Topsector Energy subsidy from the Dutch Ministery of Economic Affairs

Visit our Booth 0.21

#### **ECN**

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 88 515 49 49 vanselow@ecn.nl

F +31 88 515 44 80 www.ecn.nl

