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Conventional Gas-Liquid Reactors 
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Drivers for Structured Reactors 

 increased mass transfer 

 all reactant undergoes 
same processing 

higher conversion 
 
 

higher selectivity 

 scale out vs scale up predictable performance 



Mass Transfer Highest for TFR 

Adapted from: Kreutzer et al.  
Catal Today 111 (2006) 111. 
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Taylor flow reactor (TFR) 
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Liquid film (~10 μ) 
 

Intensive mixing in the slugs 

G 
L L L 

G 

  slug                      bubble                         slug                           bubble                slug 

~3 mm 
 



Taylor Flow Reactor (TFR) 

Single pass reactor 



Static Mixer Reactor (SMR) 



The Project Objectives 
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To design a flexible gas/liquid reactor based on widely accepted 
technology … using structured elements within the tubes of the 

reactor to achieve the required mass and heat transfer 
properties. 

To accelerate the introduction of structured reactors in industry 



The model reaction 

 

B3 + H2  B2  (r1) 

B2 + H2  B1  (r2) 

 

B3: 2-butyne-1,4-diol 

B2: 2-butene-1,4-diol 

B1: 2-butane-1,4-diol 
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Kinetic model 
Chaudhari et al. Appl. Catal. 1987, 29, 141 

 
 
 
 
 
 
 
 
 
 
 
 

𝑟1 =
𝑤𝑘1𝐶𝐻2

1 + 𝐾𝐵3𝐶𝐵3
2    

𝑟2 =
𝑤𝑘2𝐶𝐻2𝐶𝐵2

1 + 𝐾𝐵3𝐶𝐵3
2  

𝐶𝑖- concentration of 𝑖 on the catalyst surface, kmol/hr 
𝑘1, 𝑘2 - reaction rate constant, m6/(kmol·s·kgPd) 
𝐾𝐵3 - adsorption constant of B3, m3/kmol 
𝑤 – catalysts loading, kgPd/m3 



Sequential production of B2 and B1 
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The model reaction 
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Kinetic model 
Chaudhari et al. Appl. Catal. 1987, 29, 141 
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𝑤 – catalysts loading, kgPd/m3 



Nearly ideal plug flow in Taylor Flow Reactor 
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SMR: measured RTD (Fg, FL) 
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Pe and N 
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 σ213smx
2
/t213smx

2
 N Pe D (m

2
/s) 

1.86 ml/min L, 10 ml/min G 0.0474 21 41 1.4·10
-4

 

2.79 ml/min L, 10 ml/min G 0.0331 30 59 1.7·10
-4

 

3.72 ml/min L, 10 ml/min G 0.0441 23 44 2.8·10
-4

 

5.58 ml/min L, 10 ml/min G 0.0236 42 84 1.9·10
-4

 

5.58 ml/min L, 12 ml/min G 0.0356 28 55 3.1·10
-4

 

5.58 ml/min L, 15 ml/min G 0.0380 26 52 3.3·10
-4

 

 

The RTD for N ideally mixed tanks in series is given by (Swaaij & Westerterp): 

𝐸 𝜃 =
𝑁𝑁𝜃𝑁−1

𝑁 − 1 !
𝑒−𝑁𝜃 

and its variance is: 
𝜎2

𝑡2 =
1

𝑁
 



Results: SMX vs TFR 
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Two reactor models for TFR 

Kinetic model for main and side reactions 
Chaudhari et al. Appl. Catal. 1987, 29, 141 

Pseudo-homogeneous reactor model 
Assumes uniform liquid concentrations in the film in a unit 
cell 
Overall mass transfer gas-liquid-solid  

𝑘𝐺𝐿𝑆𝑎𝐺𝐿𝑆 = 𝑘𝐺𝑆𝑎𝐺𝑆 +
1

𝑘𝐺𝐿𝑎𝐺𝐿
+

1

𝑘𝐿𝑆𝑎𝐿𝑆

−1

 

 
Kreutzer et al. Chem. Eng. Sci. 2005, 60, 5895. 
Van Baten & Krishna Chem. Eng. Sci. 2004, 59, 2535. 
Van Baten & Krishna Chem. Eng. Sci. 2005, 60, 1117. 

Bubble-and-slug reactor model 
2D axisymmetric diffusion model for liquid film and 
catalyst layer 
Modelling local depletion and replenishment during 
passing of bubble and slug (transients)  

catalyst layer

bubble

liquid film



Passing slug 

B3 is readily replenished         H2 concentration low but not depleted 

Liquid film 

Catalyst 

Slug 

B3 H2 



Passing bubble 

Even at high B3 concentration in the bulk, B3 present in liquid film and 
catalyst layer is fully converted during the passage of a bubble 

Liquid film 

Catalyst 

B3 H2 



Summary 

• The Taylor flow reactor and static mixer reactor can outperform 
conventional reactors for gas-liquid reactions, due to their intensified mass 
transfer capabilities and low axial mixing.  

• The experimental Taylor flow reactor shows plug flow behaviour. 

• Measured selectivities for a model reaction in a Taylor flow reactor and in 
a static mixer reactor were 80 to 90%. 

• Observed performance for TFR better than for SMR, due to higher mass 
transfer and closer to plug flow.  

• Observed conversions and selectivities for a model reaction were lower 
than expected (95 - 96%). 
– For the TFR, modelling suggests that depletion of B3 could be the cause. Performance 

is expected to improve for smaller slugs. 
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