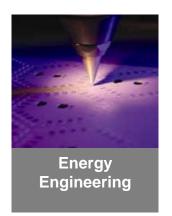


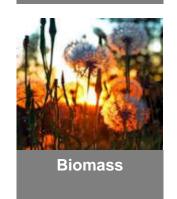
Large Scale Energy Storage & Conversion in a Renewable Energy System

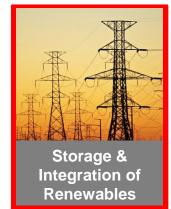
Rob Kreiter, Jeroen de Joode, Paul Koutstaal


Amsterdam 11-06-2015

ECN-L--15-045

R&D programmes of ECN

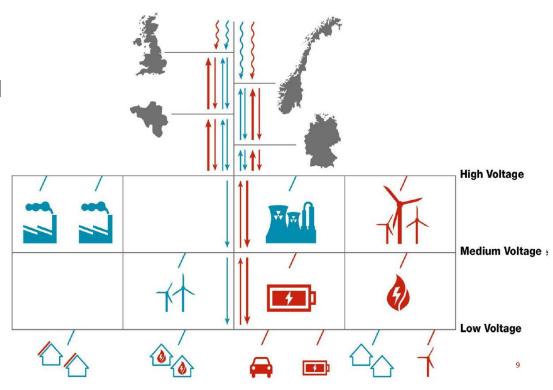




Outline

- Energy system challenge
- Flexibility options
 - Large-scale electricity storage
 - Electricity conversion in chemical sector
- ECN technology example
- Conclusions

Paradigm shift in the electricity system

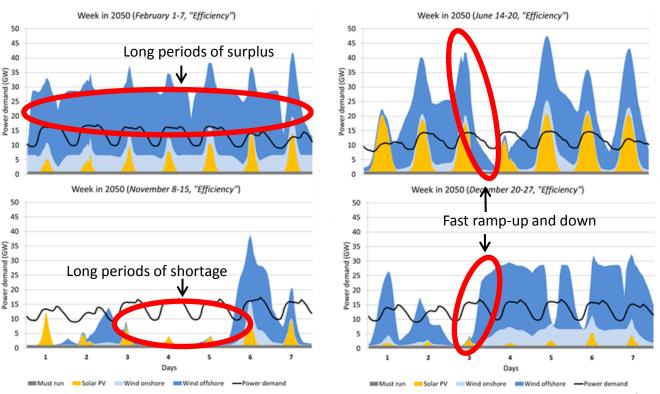


From top-down:

- Demand driven
- Supply matches demand

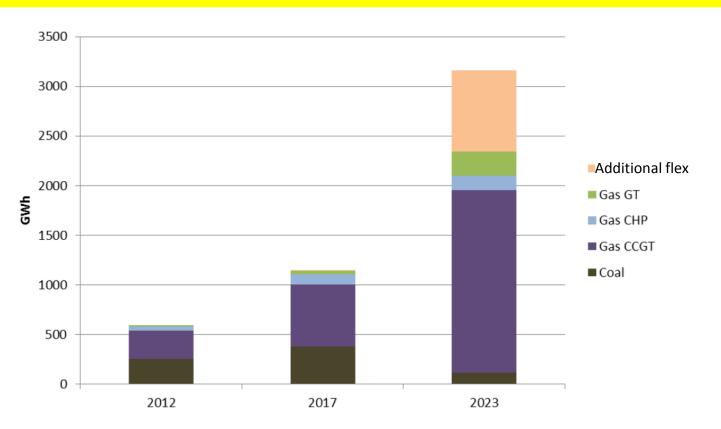
To more complex:

- Supply at all levels
- Intermittent supply
- More flexible demand


Source: Tennet

Challenge:

more renewables, lower predictability


Electricity balance per hour for 2050, selection of weeks

Source: HyUnder / P2G System study

Demand for upward flexibility NL 2023

*Demand for flexibility mainly caused by forecast error of wind energy

Key take-aways from scenario studies

- Reliability and affordability are imperative, next to sustainability
- Towards 2030 and 2050 a strong increase in system flexibility needed for:
 - Time-shift: balancing of supply and demand on daily, weekly and annual basis
 - Rapid response to ramp up and down at changes of weather conditions
- A larger contribution of intermittent renewables leads to surplus as well as shortage of supply:
 - Storage is a short-term solution for the surplus, a sink
 - Storage will become a true energy buffer in the long run, sink and source
- Backup power capacity similar to the current fossil fleet is needed, despite its lower utilization

Sources of flexibility - constrains

Demand response

Flexible supply

Interconnection

Energy Storage & conversion

Constrained by ... declining economics of fossil power plants

... capacity that can be shifted by end-user

... rate of installation and 'economic distance' of transport

... CAPEX and utilization

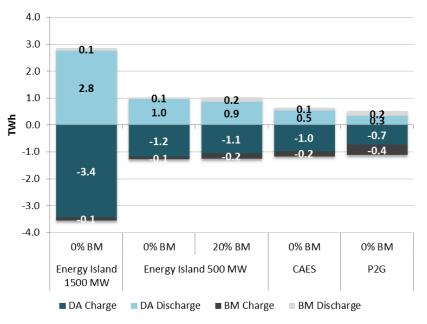
Large-scale storage & conversion

Focus of this study

- Business case for large-scale energy storage solutions in the day-ahead electricity market and / or the balancing market
- Key question: what are the potential revenues from these two markets for three particular types of storage solutions in the year 2023?

Energy Island

Power-to-gas (P2G)



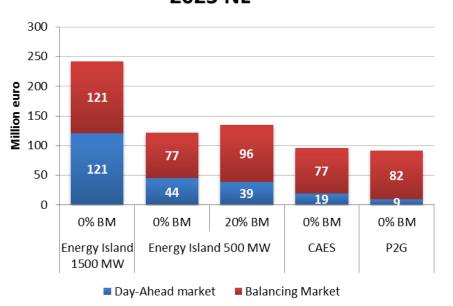
Compressed Air Energy Storage (CAES)

Yearly charge/discharge

Yearly (dis)charge of Storage options, 2023 NL

- The more efficient the storage option
 - the better it can compete in the day ahead market
 - the higher its utilization (irrespective of capacity)
- In the balancing market efficiency levels are less important
 - balancing capacity is scarce, so less competition
- When a certain capacity is reserved for the balancing market, (dis)charge shifts from the DA market to the BM

Price received/paid for (dis)charging



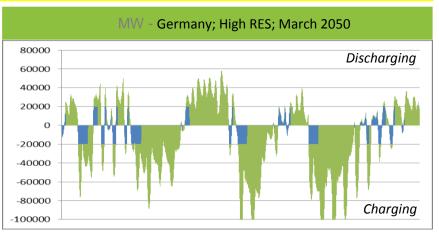
- Efficiency effect: higher efficiency means higher utilization; higher average prices paid when charging due to higher total charge and lower prices received when discharging
- Capacity effect: in line with efficiency effect

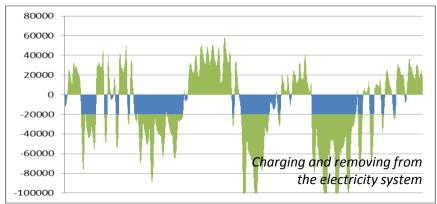
Storage revenues and scale

Yearly revenues storage options, 2023 NL

- Reserving 20% of Energy island capacity for BM, additional revenues can be gained (+10%)
- In the BM revenues are relatively high due to higher e-prices
- Comparing Energy Islands of 500 and 1500
 MW Energy island, revenues are only double

Storage economics & non-RES backup


1 Of which 508 TWh VRE, 166 TWh other


Source: FCH-JU 2015

Utilization of P2P storage vs. electricity conversion options

- P2P storage can only use part of the excess electricity
 - Energy and power capacity are limited
 - Economic capacity does not capture all surplus
- Conversion options (P2X) utilize all surplus hours
 - Only power capacity is limited
 - Storage of product (H₂, heat, chemicals) should be at near zero cost

Source: FCH-JU, 2015

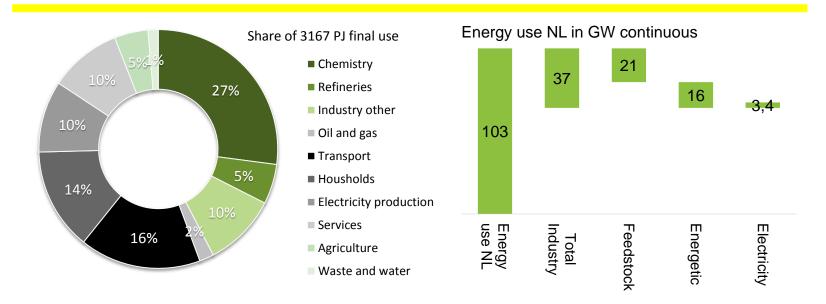
Key messages

 All studied large-scale energy storage options generate substantial revenues on the day-ahead electricity market and balancing market in 2023

Energy island of 1500 MW: M€ 242 / y

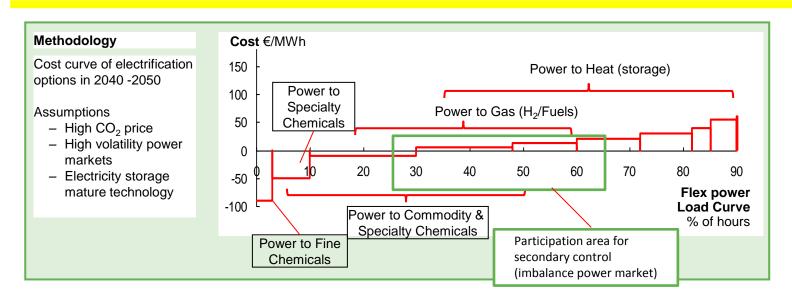
Energy island of 500 MW: M€ 122 – 134 / y

CAES of 500 MW
 P2G of 500 MW
 M€ 96 / y
 M€ 91 / y


- Energy efficiency and size of any storage facility are key in determining potential revenues.
- Reserving capacity for the balancing market leads to extra profit (10% in this example)
- Caveat: electricity market factors may impact revenues and should be considered in future analyses

Electricity conversion: Large-scale DSR in industry

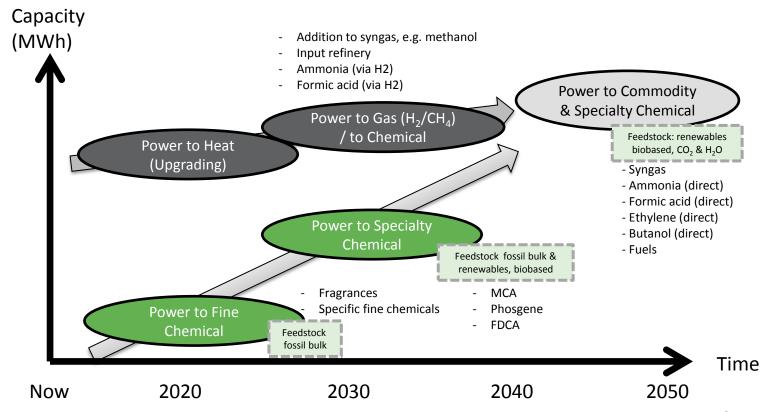
Energy use in the NL Industry



Year	Source	GW _{eq cont}	GW _{installed}
2013	Total electricity generated	13.5	30
2013	renewable electricity	1.4	
2030	Total electricity generated	14.1	
2030	renewable electricity (53%)	7.5	
2030	intermittent solar/wind (87%)	6.5	26

Electrification technologies

Illustrative cost curve of demand-side response in chemistry



- Economics of demand-side response options determine their dispatch strategy:
 - Power to fine and specialty chemicals mainly base-load power off-take.
 - Power to heat wide range of profitable application (e.g. E-grid management, imbalance market or day ahead options).
 - Power to gas Imbalance market, intraday and day ahead markets.

Source: ECN & TNO, 2015

High level Road Map of Electrification of Chemical sector

Source: ECN & TNO, 2015

Technology example: Energy Train

Energy train

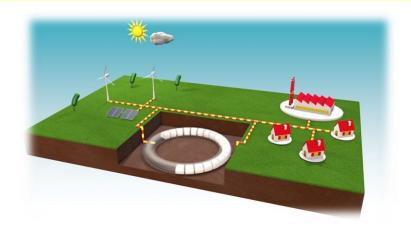
Movie Energy Train

The Energy Train main specs

Power:

- 2,5 GW
- 8 h charge/discharge

• Size:


Ring diameter: 5 km

Tunnel size: 5 m diameter
Moving mass: 600 000 tons
Speed: up to 500 m/s

- Acceleration:
 - max 10 g lateral
 - max 0.03 g tangential

High efficiency:

- Friction loss: <2%/day</p>
- Electro-mechanical propulsion
- Maglev suspension
- Vacuum

Storage cost and e-price sensitivity

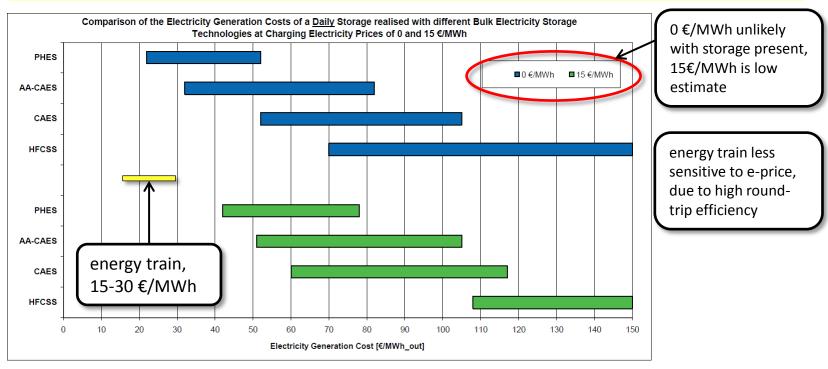


Figure 18: Comparison of the electricity generation cost of a daily storage realised with different bulk energy storage technologies at two different charging current prices (Source: Wietschel, 2011)

source: www.store-project.eu

Conclusions

- Growing intermittency of power production leads to higher volatility in the market
 - Business cases for additional flexibility options become viable in the short run
 - Need for time shift as well as fast response flex-options
- Market for P2P storage has an upper bound: revenues per unit of capacity diminish to scale
- Utilization of conversion options can be much higher than storage options
- All examples assume a level playing field for all flexibility options
 - The role of storage needs to be defined
 - The role of different stakeholders needs to be redefined
 - Cost of imbalance to be put at the source of intermittency

Dr. Rob Kreiter

Senior Program Developer Storage & Integration of Renewable Energy

kreiter@ecn.nl

+31 6 108 800 83

ECN

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 88 515 49 49 info@ecn.nl F +31 88 515 44 80 **www.ecn.nl**