

Ketone-Based Organosolv Fractionation of Lignocellulosic Biomass

KETONE-BASED ORGANOSOLV FRACTIONATION OF LIGNOCELLULOSIC BIOMASS

Raimo van der Linden, Wouter Huijgen, Arjan Smit & Jaap van Hal

RRB-11 conference, York, UK Wednesday, 3 June 2015

www.ecn.nl

Energy research Centre of the Netherlands (ECN)

• Mission:

 With and for the market, we develop knowledge and technology that enable a transition to a sustainable energy system.

• Business units:

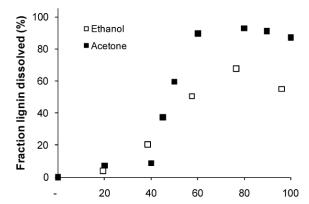
- Biomass & energy efficiency
- Solar energy
- Wind energy
- Policy studies
- Environment & energy engineering

ECN

- Independent research institute
- ~550 employees
- Locations:
 - Petten (HQ)
 - Amsterdam
 - Eindhoven
 - Brussels
 - Beijing

Why Organosolv?

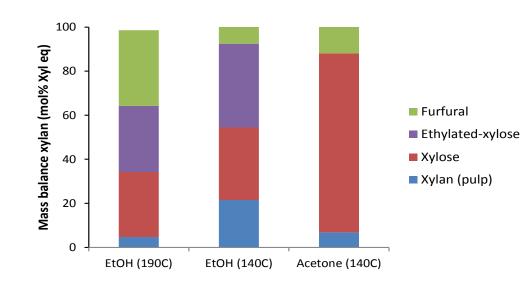
- Fractionation & valorization of all major constituents
 - Increased revenue from biorefinery
 - Financially more attractive
- Cellulose: High conversion enzymatic hydrolysis
- Lignin: High-quality for production of chemicals
- Hemicellulose: Choice for xylose or xylose derivatives (furfural)
- (Other): (Proteins, extractives, minerals, ...)


Comparison Ketone-Ethanol organosolv

- Conventional organosolv: solvent = ethanol
- Ethanol organosolv side reactions
 - Ethanol reacts with lignin and (hemicellulose) sugars
 - Market for ethyl-sugars?
 - High temperatures / severity leads to formation of furfural
 - Side-reactions change lignin structure
- Ketone (acetone) organosolv
 - No side reactions of acetone with lignin or sugars
 - Higher xylose yields
 - Lower formation of furfural
 - Mild conditions lead to a near-native lignin

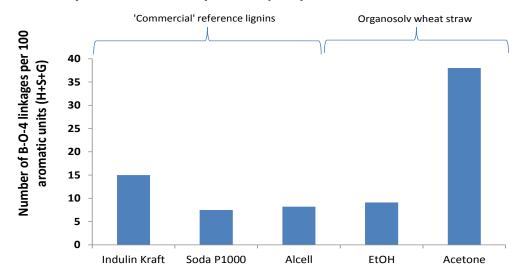
'Ketosolv'

- Ketones: excellent lignin solvents
- Key features 'Ketosolv':
 - Typical temperature: 190°C → 140°C
 - Solvent: ethanol → acetone
 - H_2SO_4 dose used for wheat straw: 20 \rightarrow 60 mM


Huijgen, W. J. J.; Reith, J. H. & Den Uil, H. (2010) Industrial & Engineering Chemistry Research, 49(20), 10132-10140

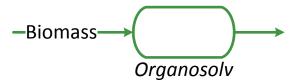
- Effective pulping at milder conditions:
 - High cellulose pulp purity and enzymatic digestibility
 - Good lignin yield and lignin more native / less condensed lignins
 - Also feasible with longer chain ketones such as butanone
- Self-condensation of acetone at conditions applied very limited

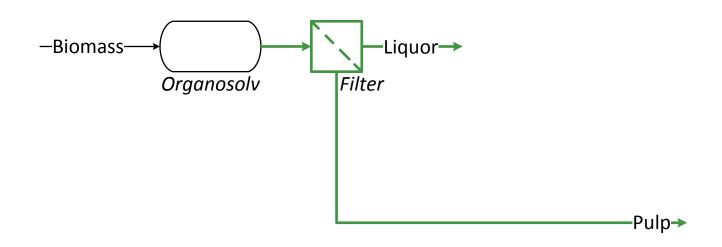
Hemicellulose products


- Example: wheat straw
- High temperature ethanol:
 - Ethyl-sugars
 - Furfural
- Low temperature ethanol:
 - Ethyl-sugars
- Low temperature acetone:
 - Maximized xylose production

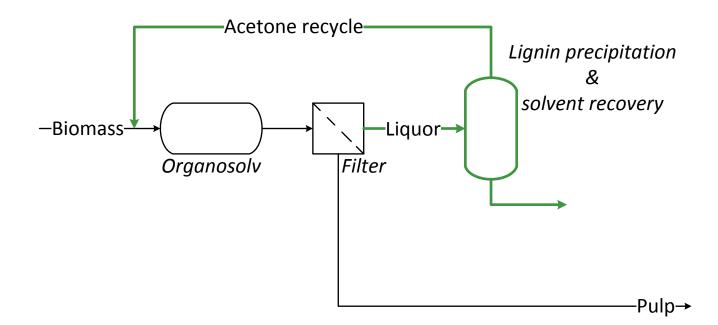
Remarkable lignin characteristics

- High number β-O-4 ether linkages
 - Suggests more native lignin (more reactive)
 - Crucial for many chemocatalytic depolymerisation routes

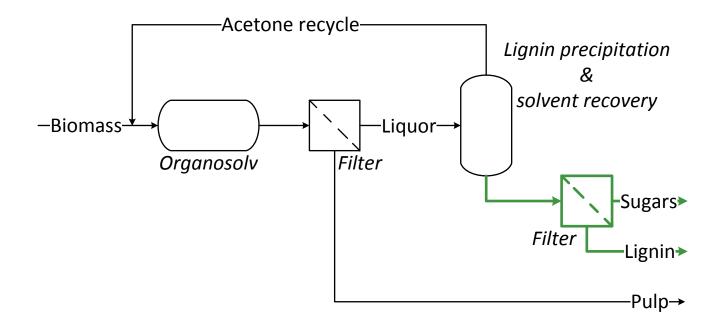



- Specific process for lignocellulosic biomass
- Organosolv reactor:

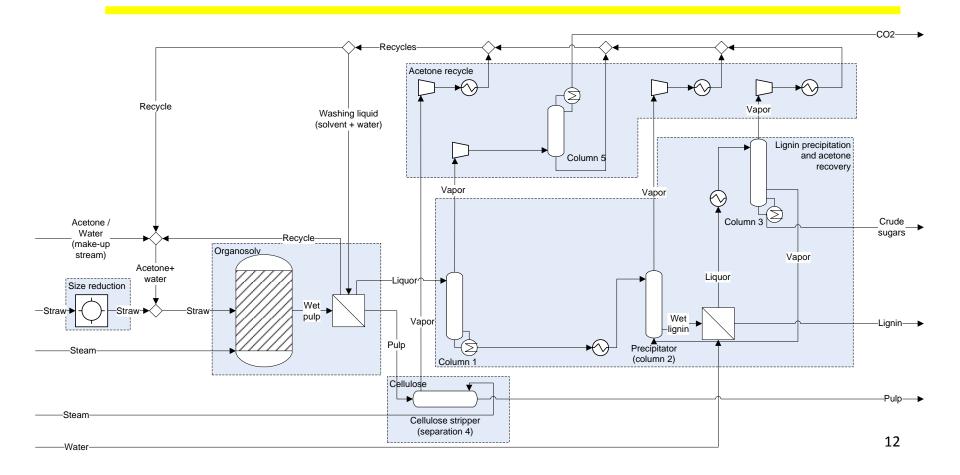
 $Biomass_{(s)} \rightarrow Cellulose_{(s)} + Lignin_{(Solvent + H2O)} + Hemicellulose_{(Solvent + H2O)}$



A filter removes cellulose from the liquor



- Lignin is precipitated by removing the acetone (lowering lignin solubility)
- Recycling is 99.9%; Crucial for economics



- A filter separates the lignin from the C5 sugars
- Organosolv can fractionate all three main biomass components

Process design acetone organosolv

Mass balance

Model built in Aspen plus software

Feedstock	kt/y	Products	kt/y
Straw (dw)	1,000	Cellulose pulp	780
Straw moisture	100	(moisture)	44%
Acid (catalyst)	30	Lignin	131
Acetone	5	(moisture)	20%
Water	1,470	Sugars	1,615
Air	2,718	(water)	69%
		CO ₂	0.4
		Moist air	2,797
Total	5,323	Total	5,323

"Biomass balance"

- Water, acetone, catalyst and air excluded in "biomass balance"
- Water reacts (hydrolysis reactions)

Feedstock	kt/y	Products	kt/y
Straw (dw)	1,000	Cellulose pulp	439
Straw moisture	-	(glucan)	72%
Acid (catalyst)	-	Lignin	104
Acetone	-	(near-native lignin)	99%
Water	-	Sugars	478
Air	-	(sugars)	53%
		(xylose)	71%
		Other	1
Total	1,000	Total	1,022

Energy requirements

- Main energy consumers: all related to acetone recovery
- Reboilers acetone recovery columns:
 - Column 1: 37 MW
 - Column 3: 33 MW
- Condensers
 - Column 2, pre-cooler: 40 MW
 - Condenser / degasser column 1: 32 MW
- Heat integration very important!
 - Vapor compressed to reactor pressures before condensation
 - Increase integration potential

Energy requirements (2)

	No heat integration	After pinch analysis
Heating (MW)	126	25
Cooling (MW)	-120	-12
Electricity (MW)	19	19

	No heat integration	After pinch analysis
Heating (MJ/kg straw)	3.63	0.72
Cooling (MJ/kg straw)	-3.47	-0.35
Electricity (MJ/kg straw)	0.55	0.55

Conclusions

- New patented ketone organosolv process
- Milder conditions
 - Less degradation reactions
- High yields
 - Hemicellulose sugars not degraded as much
- A more native lignin
 - High number β -O-4 ether linkages
- Less energy consumption
 - Use of acetone positive for energy consumption
 - Process design optimized for heat integration

Cooperation

- ECN is looking for partners!
- Equipment design
- Application tests
 - Lignin applications with near-native lignin vital for acetone-organosolv
 - Cellulose for fibres or sugars
 - Hemicellulose sugar applications (and purification?)
 - Mineral cycle
- ... But we can also help you if you have other challenges for us related to biorefining!

Thank you for your attention

Raimo van der Linden

vanderlinden@ecn.nl

ECN

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 88 515 49 49 info@ecn.nl F +31 88 515 44 80 **www.ecn.nl**

