

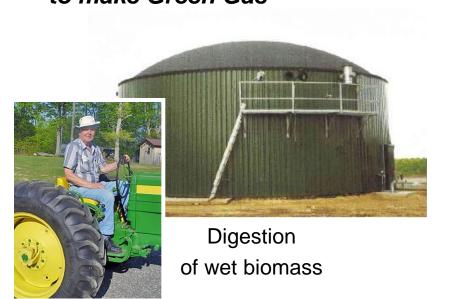
GREEN GAS by gasification: a unique opportunity for the gas industry

GREEN GAS by gasification: a unique opportunity for the gas industry

Bram van der Drift ECN

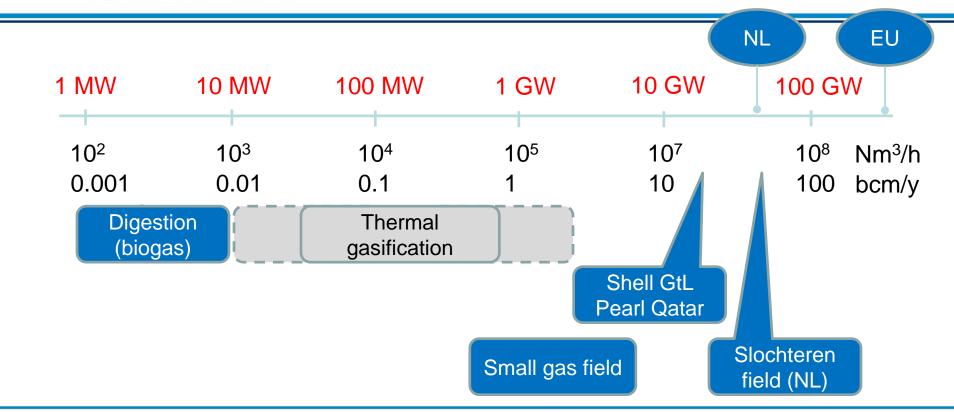
EDGaR Closing Conference, 18-19 March 2015, Amsterdam

- Will Green Gas always be more expensive than Natural Gas?
- No
- Green Gas has the potential be become competitive with Natural Gas
- Should we wait for that to happen?
- No
- Technology development is required to get there, start now



TWO PROCESSES to make Green Gas

Gasification of dry biomass



GASIFICATION for **GREEN GAS**3 step process

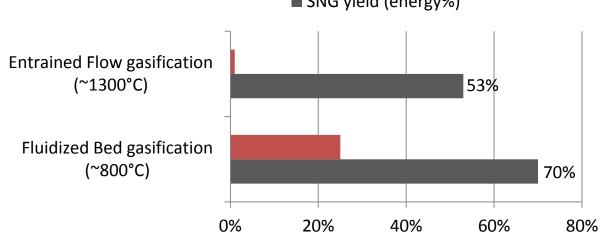
Solid becomes gas

Removal of tars, particles, sulphur, ...

Make methane, compress, dry, ...

Gas

upgrading



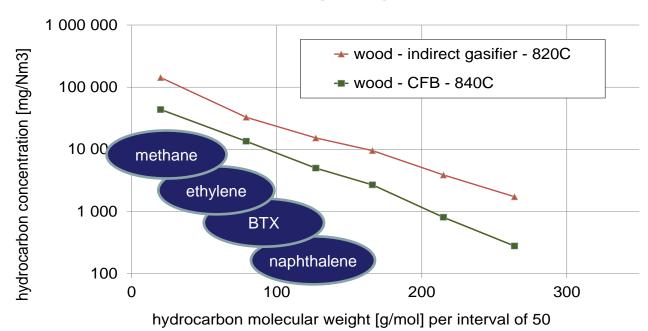
GASIFICATION: NOT TOO HOT PLEASE

instant methane is good for efficiency

■ methane yield (energy%)

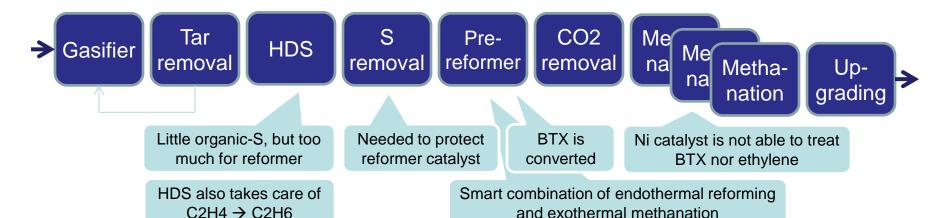
■ SNG yield (energy%)

Source: C. M. van der Meijden et.al., Biomass and Bioenergy 34, pp 302-311, 2010



METHANE NEVER WALKS ALONE

BTX: Benzene, Toluene, Xylenes



ECN BASE CASE everything is converted to methane

Gasifier: Fluidized Bed Gasifier operating at ~800°C

HDS: HydroDeSulphurization (converting organic S molecules into H₂S)

BTX: Benzene, Toluene, Xylene (~90%/9%/1% in case of fluidized bed gasification at ~800°C)

OPERATING FACILITY at ECN

70% efficiency from biomass to Green Gas

MILENA gasifier

OLGA tar removal

HDS reactor

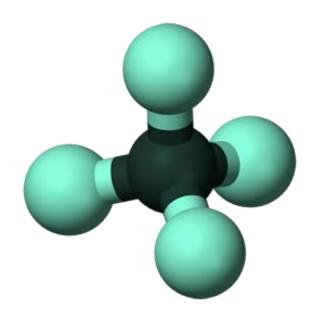
Further gas cleaning

Methanation reactors

COST OF GREEN GAS

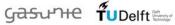
long-term perspective (say 2030)

	Biomass at 2 \$/GJ	Biomass at 9 \$/GJ	
Biomass	2.9 \$/GJ	12.9 \$/GJ	
Capex	7.5 \$/GJ		
Opex	1.7 \$/GJ		
Other	1.2 \$/GJ		
Power	0.7 \$/GJ		
Total [\$/GJ]	14 \$/GJ	24 \$/GJ	
Total [\$ct/m³ NG-eq]	45 \$ct/m ³	77 \$ct/m ³	



HOW TO GET THE COSTS DOWN

- Scaling up
- Cheaper biomass
- And the other ones...

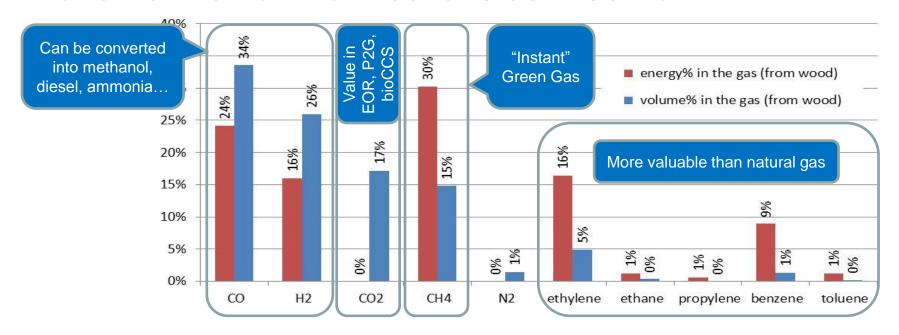


THE DAKOTA EXAMPLE

THE DAKOTA EXAMPLE

- Lignite to SNG in North Dakota
- 1.1 bcm SNG/year
- And several co-products: naphtha, phenols, oil, CO₂
- The co-products pay the process

	Energy output [%]	Revenue [%]
SNG	79%	41%
Naphtha, phenol, oil, CO ₂	21%	59%



GASIFICATION OF BIOMASS: GAS COMPOSITION

GREEN GAS COST REDUCTION

- <u>-3 \$/GJ</u> by bio-BTX
- <u>-5 \$/GJ</u> by bio-ethylene (either separated or converted into aromatics)
- <u>-5 \$/GJ</u> by bio-CO₂
- And more:
 - H₂/CO for bio-chemicals
 - Increasing bio-BTX yield
 - Increasing bio-ethylene yield
 - Accommodate huge amounts of H₂ to make methane
 - Solving the renewable power intermittency

BTX SEPARATION

benzene, toluene, xylenes

- First step after OLGA tar removal
- Liquid BTX product: first liter in 2014
- >95% separation
- BTX = 90/9/1
- Simplifies downstream process to Green Gas

CONCLUSION

- Green Gas by gasification of biomass can have 70% efficiency
- Estimated production costs 14-24 \$/GJ Green Gas
- Chemical co-products can reduce this with up to 13 \$/GJ, or even more...
- Co-production of bio-chemicals and bio-SNG (Green Gas) is a good prospect
- Not original though (DakotaGas, shale gas, ...)
- Bio-chemicals will boost social acceptance
- "Better is the enemy of good"
- Let us not wait and start producing Green Gas by gasification now
- Which is what we do with Gasunie and Royal Dahlman

OPPORTUNITY for GAS INDUSTRY: BIOBASED ECONOMY

Future:

Gas industry is number 10 in a bio-based economy

Now:

Gas industry is in defense position,

Number 10 (playmaker): a player who controls the flow of the team's offensive play, and is often involved in passing moves which lead to goals, thanks to their vision, technique, biomass control, creativity, and passing ability

MORE INFORMATION

Bram van der Drift

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten

The Netherlands The Netherlands

T +31 224 56 45 15 vanderdrift@ecn.nl

M +31 610 909 927 www.ecn.nl

Publications: www.ecn.nlpublications ... Fuel composition database: www.bhyllis.nl WILLEUS INDITECT Gastler: WWW.milenatechnology.com | www.fenewableenergy.nl
OLGA: WWW.olgatechnology.com | www.hirchic com
OLGA: www.hirchic com | www.hirchic com Tar dew point calculator: www.thersites.nl La pioenergy/gasification: www.inersines.in Milena indirect gasifier. www.milenatechnology.com SNG: www.bioSNG.com/www.bioCNG.com BTX: www.bioBTX.com

Nederlands

Hier wordt geïnvesteerd in uw toekomst. Het onderzoeksprogramma EDGaR is erkentelijk voor de bijdrage van de financieringsinstellingen: Samenwerkingsverband Noord Nederland. Dit project wordt medegefinancierd door het Europees Fonds voor Regionale Ontwikkeling en door het ministerie van Economische Zaken. Cofinanciering vindt eveneens plaats door de Provincie Groningen.

English

Investing in your future. The research program EDGAR acknowledges the contribution of the funding agencies: The Northern Netherlands Provinces (SNN). This project is co-financed by the European Union, European Fund for Regional Development and the Ministry of Economic Affairs. Also the Province of Groningen is co-financing the project.

