

## New Gasification Technology for (High Ash) Low-Rank Coal





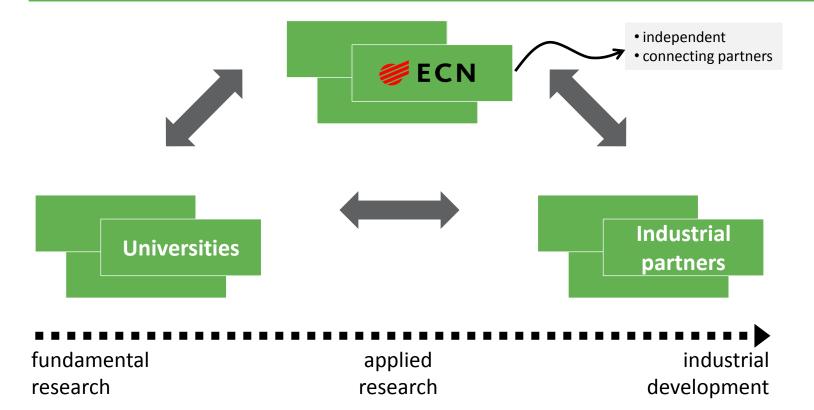
## New Gasification Technology for (High Ash) Low-Rank Coal

Bert Rietveld, Sander Grootjes, Christiaan van der Meijden, Bram van der Drift

Clean Coal Technology 2014

Taiyuan, 16-18 September 2014

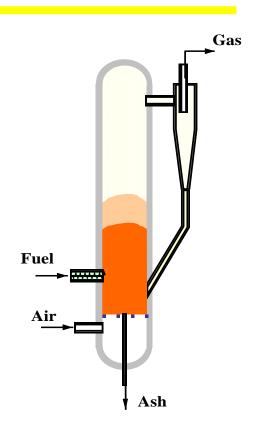



### Content

- Something about ECN
- Fluidized Bed Gasification
- Allothermal Gasification
- ECN MILENA for biomass gasification
- ECN i-MILENA for (high ash) low-rank coal gasification
- Test results
- Promising configurations / applications
- Further development of the i-MILENA
- Conclusions and Outlook



## ECN's mission and position


#### Making the renewable energy society come true



## Fluidized bed gasification for low rank coal



- Proven technology
- Typical 850°C 1000°C, pressurization possible.
- Air blown or steam / oxygen mixtures.
- Scale > 5 MW<sub>th.</sub>
- Hydrocarbons in the gas, some tar in gas.
- Fuel flexible (also used for waste and biomass)
- No fine milling required.
- Incomplete fuel conversion.
- Examples: ThyssenKrupp HTW, TRIG, U gas SES.
- Better suitable for high ash coals then EF
- In competition with fixed bed





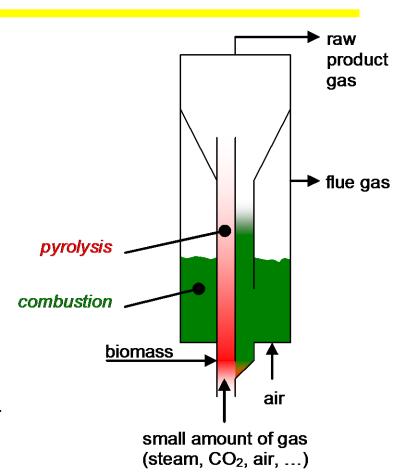
### Allothermal gasification

#### Combustion:

+ air 
$$(\lambda > 1)$$
  $\rightarrow$  flue gas + heat

#### Pyrolysis / gasification:

#### allothermal gasification:


```
fuel + air (\lambda \sim 0.3) \rightarrow gas + flue gas
```

electricity, heat, fuels, SNG, chemicals, H<sub>2</sub>, products

# ECN MILENA biomass gasification process

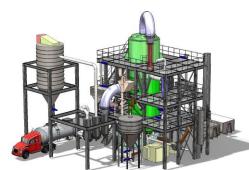


- Fluidized bed gasification
- Temperature level: 700 900°C
- Product gas contains methane, ethylene, benzene and tars
- Complete conversion of the fuel
- No carbon in the ash
- High efficiency
- Very little nitrogen in producer gas
- Heat transfer through bed material
- One single vessel: compact design
- Fuel flexible: wood, RDF, lignite, sunflower husks, etc.



# Present status MILENA for biomass gasification




Lab-scale installation since 2004, pilot plant since 2008

Several demonstration projects based on MILENA + OLGA in preparation

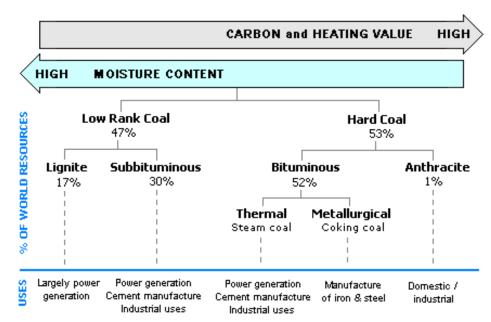
- The Netherlands: Bio-Methane demonstration (4 MWth)
- England: RDF to Power gasification (7 MWe), 1st phase (pilot plant tests)
  finalized
- India: Soy stalks to power (1 MWe), with gas engine, under construction












## i-MILENA for high ash coal

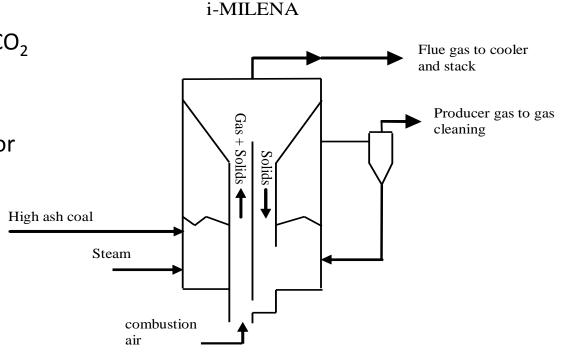
# Role of low-rank coal in energy society



- Coal will continue to play a key role in the world's energy scenario (power generation, fuels and chemicals.
- Coal resources have been estimated at over 861 billion tons.
- Coal meets around 30% of the global primary energy.
- Coal generates 42% of the world's electricity.
- Around 45% of the world's coal is either high-moisture or high-ash.



## Gasification of (high ash) low rank coal




- Subcritical combustion of high ash coal, often results in inefficient operation of the power plants.
- Emissions of fly-ash in power plants as well as the ash disposal pose an ecological and environmental challenge.
- Gasification of coal has minimal environmental impact by conversion of the coal into Synthetic Natural Gas (SNG), i.e. high-quality methane.
- During the production of SNG CO<sub>2</sub> is separated from the gas. Upon sequestration, the carbon footprint can be reduced to the same level as natural gas.

## i-MILENA gasifier for (high ash) low rank coal



- Carbon conversion in gasifier
  - 60 70% -> CO, CH<sub>4</sub>, C<sub>6</sub>H<sub>6</sub> & CO<sub>2</sub>
  - production of H2 via CO shift
- Carbon conversion in combustor
  - 30 40% -> CO2
- Overall conversion is 100%
  - ashes are white / grey



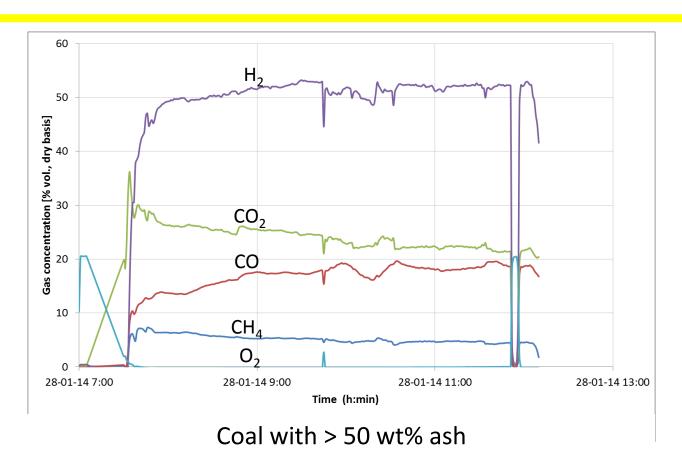


### Tests with low-rank coals

- Extensive testing done in 2012, 2013 & 2014 as part of the EU Optimash project; cooperation with Thermax from India
- Several low rank coals from India and Turkey tested
- Ash content over 50%
- Ash of coal used as bed material
- Gasifier connected to gas cleaning section (OLGA)








i-MILENA GAS CLEANING

**METHANATION** 



## Producer gas composition low rank coal



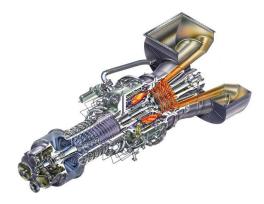
# Producer gas composition from coal with > 50 wt% ash



|                  |              | Test 1 | Test 2 |
|------------------|--------------|--------|--------|
| Producer gas con | nposition    |        |        |
| CO               | [% vol. dry] | 17.1   | 17.4   |
| $H_2$            | [% vol. dry] | 51.7   | 52.2   |
| $CO_2$           | [% vol. dry] | 23.7   | 25.1   |
| $CH_4$           | [% vol. dry] | 5.2    | 5.3    |
| $O_2/(Ar)$       | [% vol. dry] | 0.07   | 0.04   |
| $C_2H_2$         | [% vol. dry] | 0.071  | 0.070  |
| $C_2H_4$         | [% vol. dry] | 0.482  | 0.377  |
| $C_2H_6$         | [% vol. dry] | 0.011  | 0.006  |
| $C_6H_6$         | [ppmv dry]   | 2309   | 2574   |
| Toluene          | [ppmv dry]   | < 10   | < 10   |
| $N_2$            | [% vol. dry] | 3.8    | 1.2    |
| $H_2S$           | [ppmv dry]   | 3586   | 3229   |
| COS              | [ppmv dry]   | 56     | 106    |



## Bottom ash






### Foreseen applications

- (Co-)firing in boilers, scale > 1 MW<sub>th.</sub>
- Gas engines for combined heat and power production, limited tar removal required, scale 2 – 20 MW<sub>a</sub>.
- Combined Cycles using gas turbines for power production, tar removal required (OLGA), scale > 6 MW<sub>e</sub>.
- SNG production, preferably in combination with CCS, tar removal required (OLGA), scale > 100 MW $_{th}$ .









## SNG from low-rank coal using i-MILENA

- i-MILENA produces a gas with a high initial yield of CH<sub>4</sub>
- Overall efficiency for low-rank coal to SNG is about 60%
- No Air Separation Unit (ASU), low investment
- Low overall water consumption
- Low rank coal is the ideal fuel for the i-MILENA SNG configuration
- Construction of MILENA biomass gasifier to produce SNG is scheduled;
  final investment decisions end 2014



### Conclusions & Outlook

- Demonstrated that i-MILENA is able to produce a medium calorific value producer gas without the need for an air separation unit (ASU).
- The overall carbon conversion is close to 100% yielding a grey/white ash
- Operated at low temperature, no ash melting.
- Simple gasifier, also suitable for small scale applications (<100 MW), low investment cost.
- High cold gas efficiency of about 65%, due to full carbon conversion and relatively low temperature
- Process is ideal for SNG production, low investment, high efficiency and low water consumption, coal to methane efficiency is about 60%
- Next step in development: pilot scale testing and preparations for demo plant with commercial partner



### THANKS FOR YOUR ATTENTION

#### **Contact: Bert Rietveld**

#### **Energy research Centre of the Netherlands (ECN)**

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten

The Netherlands The Netherlands

T +31 224 56 44 52 g.rietveld@ecn.nl

M +31 653 292 766

publications: www.ecn.nl/publications fuel composition database: www.phyllis.nl tar dew point calculator: www.thersites.nl

IEA bioenergy/gasification: www.ieatask33.org

Milena indirect gasifier: www.milenatechnology.com

OLGA: www.olgatechnology.com / www.renewableenergy.nl

SNG: www.bioSNG.com /www.bioCNG.com

