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 Not all green power can be fed into the electricity grid due to: 
• Mismatch in time 
• Mismatch in location (transport limitations) 

Increasing share of  
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Power to Gas routes 

• Power to Hydrogen by electrolysis 
 
 
 
 
 
 

• Power to Substitute Natural Gas by electrolysis + methanation 
 

Pros Cons 

Direct conversion (electrolysis) Storage  

No carbon Distribution 

Load Flexibilty 

Pros Cons 

Existing infrastructure Multistep process (efficiency) 

CO2 utilisation 

Energy density 
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CO2 source: 
• Biogas (fermentation) 
• Bio-syngas (gasification) 
• CO2 capture 

6 CO2 + 4 H2  CH4 + 2 H2O 



Objectives 

Process 

1. Configurations and conditions 

2. Flexibility impact 

 

Gas quality 

1. Thermodynamic assessment 

2. Experimental  

3. Novel process 
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Take home messages  

• Power-to-gas for producer gas upgrade can almost double SNG production 

 

• Low impact on SNG quality, H2 limit in the grid point of attention 

 

• “Proof of principle” with novel sorption enhanced (SE)-methanation, close 
to 100% conversion 
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Systems modes evaluated: E-demand 

9 

CO2 
removal 

Methanation 
Gas 

Cleaning 
Biomass 

gasification 

SNG 

NG Grid 

Producer gas 

Sweet methanation 

Sour methanation 

Biomass 
gasification 

CO2 removal 

Methanation 
Gas 

Cleaning 

SNG 

NG Grid 

Producer gas 

H2S 

H2S 



10 

Systems modes evaluated: E-excess  

 Switch between two modes  
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Sweet/Sour methanation differences 
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*Lee, A. L. (1978) Evaluation of coal conversion catalysts. 

Sweet  methanation Sour  methanation  

(O)Stoichiometric ratio required  (+) Can operate under sub-
stoichiometric conditions *                             

(-) Deep H2S removal  (+) Less deep H2S removal  

(-) More process steps  (+) Less process steps  
(hydrogenates unsaturated hydrocarbons and 
reforms BTX)  

(+) Commercially proven  (-) Limited commercial experience  



System starting points 

Battery limits 
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Sweet route   Sour route  

Mole Frac

H2 38.78%

CO 8.57%

CO2 32.48%

CH4 18.52%

N2 0.89%

Mole Frac

H2 27.96%

CO 34.00%

CO2 15.51%

CH4 13.52%

C2H6 0.26%

C2H2 0.39%

C2H4 4.46%

C6H6 0.79%

TOLUE-01 0.13%

N2 1.18%
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Configuration: 

multi-stage process with 3 intercooled fixed bed reactors 

 

 

 

 

High temperature Tmax=650°C, 3 stage, recycle after 2nd stage (LURGI HT) 

 

Design variable:  

Operating pressure: 20-60 bar 

 

Methanation section 
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Criteria 

Wobbe index 

 

                                 

 

SNG molar H2 Content 
– Max1<0.5% H2        

– Max2< 10% H2      

 

Energy balance 
– Steam balance 

– Total power use 

 
 

 
 

 

 

 

 

 

 

                           
W> 43.5 MJ/Nm3  Dutch gas grid standard 
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Possible future limit 
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Comparison: E-demand vs. E-excess (Sweet) 

Electrolysis 

Methanation Cleaning 
Producer gas 

200 MW 
 

Hydrogen, 202 MW 
 

Excess renewable electricity 
288 MW 

 

SNG 
342 MW 
 

5 MW steam 
 

50 MW steam 
 

11 MW Power 
 

13 MW Power 
 

Methanation 
CO2 

removal 
Cleaning Producer gas 

200 MW 
 

SNG 
174 MW 
 

15 

 Sour methanation comparable results  



Gas quality: E-demand and E-excess 

H2 addition in E-excess has low impact on the gas quality   
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Wobbe always reached  
Red – sour  
Black –sweet  

max2 
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Sorption Enhanced (SE-)Methanation 

CO2 Methanation reaction 

 

 

 

CO2 Methanation reaction + Water removal  

CO2 + 4 H2  CH4 + 2 H2O 

 

Enhanced reactants conversion 

CO2 + 4 H2  CH4 

H2O 
H2O 

H2O 

H2O 
H2O 

H2O 

sorbent sorbent catalyst 

H2O 

17 

CO2 + 4 H2  CH4 + 2 H2O 

CO2 + 4 H2  CH4 + 2 H2O 

catalyst 



Gas quality: SE-methanation  

 H2 level target of Max1 met at operating pressures of 30 bar 

Assumptions: 
• 2 conventional reactors  
• 3rd reactor SE-methanation 
• T= 250°C 
• Water removal is 90% 
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Conclusions & Outlook 

System studies  

• Power-to-gas is a flexible solution that can double  the SNG production 

• Sweet and Sour methanation similar performance. Sour more interesting due  

     to anticipated less process steps. 

• Switch between E-demand/E-excess has limited impact on SNG quality 

• H2 amount is point of attention 

• SE-methanation is a possible solution to obtain allowable H2 contents 

 

Outlook 

• Other CO2 sources (captured CO2, biodigester gas, other industrial processes) 
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Experimental results  

SE-methanation  

Commercial Ni-based cat + Zeolite 4A  
 

Inlet composition:  
2.5% CO2, 9.9% H2, 81.6%CH4, and 6%N2 

P = 1 atm, total flow = 150 ml/min,  
T=250°C, 3.6 g (Zeolite 4A:cat=5:1) 
Regeneration: N2 and H2 

*S.Walspurger et al., Chemical Engineering Journal 242 (2014) 379-386 20 

CH4 

H2 

H2O 

CO2 

- No H2O in product gas due to adsorption 

on zeolite 
- No H2, CO2 in product gas due to  
  SE-methanation 
- Break-through after 13 minutes 



Inlet composition: 2.4% CO2, 9.4% H2, 77.8%CH4,4.7%H2O and 5.6%N2 

P = 1 atm, total flow = 150 ml/min, 3.6 g (alumina/cat = 5:1), GHSV=2500 h-1 

Experimental results  

CO2 conversion 
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Conclusions  and outlook– 

SE methanation 

• Proof-of principle with commercial catalyst + sorbent  

 

Outlook  
 

• Optimization of adsorbent/catalyst materials 

 

• Regeneration options 
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Conclusions 

• Power to gas for bio-syngas upgrade can double SNG production with low 
impact on SNG quality  

 

• H2 limit in the grid is point of attention 

 

• “Proof of principle” with novel sorption enhanced (SE)-methanation, close 
to 100% conversion  

 

• Power to gas can be used for other CO2 sources (captured CO2, biodigester 
gas, other industrial processes) 
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EDGAR Synthetic methane project 

SOE, Solid Oxide Electrolyzer  (TUD) 

• Characterization, modeling and development 

Methanation (ECN) 

• Feedstock  & product quality  

• Gas cleaning 

• Unit operation development 

• Process design 

Integration and market aspects (Hanze, ECN, TUD) 

• Preferred configurations 

• LCA & chain efficiency 

• Market opportunities 
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