

New Rotor Concepts for Future Offshore Wind Farms

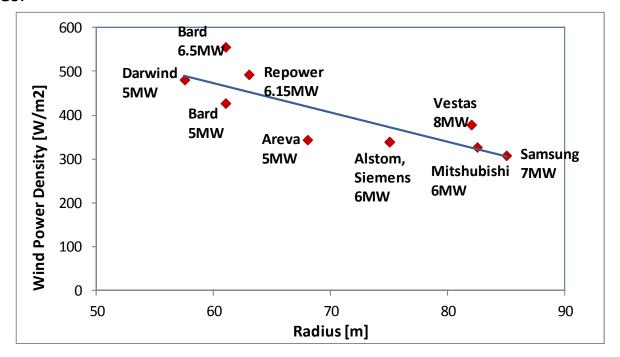
Özlem Ceyhan and Francesco Grasso

ceyhan@ecn.nl grasso@ecn.nl

Presented by Gerard Schepers

www.ecn.nl

10th European Fluid Mechanics Conference EFMC10, 14-18 September 2014, DTU Lyngby, Denmark


Outline

- Introduction and Purpose
- Method
 - Method
 - Rotor parameters
 - Rotor concepts compared
- Results
 - Wind turbine level comparisons
 - Wind farm level comparisons
 - Wind farm level Effect of airfoils
- Conclusions and discussions
- What's next?

Introduction and Purpose

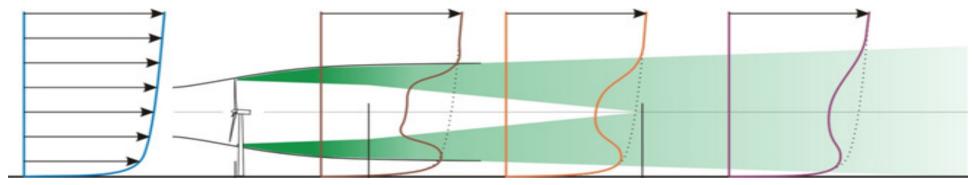
- > Decreasing power density of offshore wind turbines.
- ➤ Offshore wind turbines will be used inside offshore wind farms, not stand alone.
- ➤ Possibility of bringing a different perspective to rotor designs for large offshore wind turbines.

Method

INNWIND.EU 10MW RWT

Parametrical study for Rotor design

Reduced power density from 400W/m² to 300W/m²

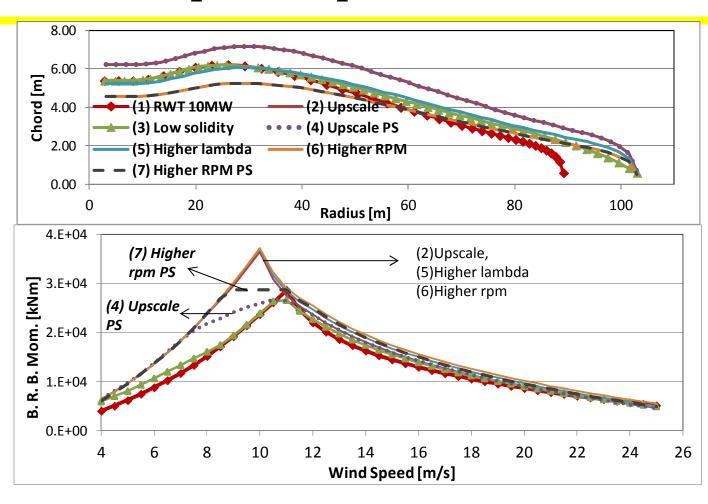

Evaluate the results in WT level (BOT software is used)

Replace the turbines in Horns Rev with studied concepts

Evaluate the results in WF level (Farmflow software is used)

FARMFLOW: Parabolized k- ϵ /Actuator disc model **ECN**

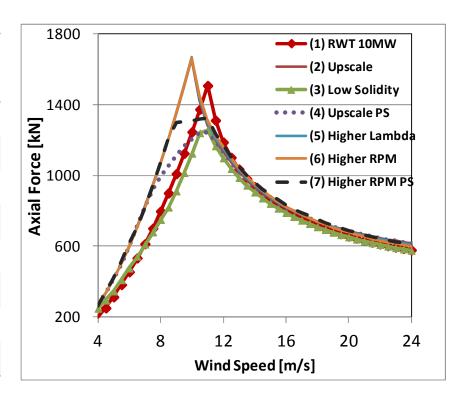
- Parabolisation: Fast, but how to solve the near wake where axial pressure gradients are significant?
- Solution:
 - Prescribe axial pressure gradients from free vortex wake method!
 - Fast database approach
 - Wake interaction fully modeled including the effect of a non-zero pressure gradient and retaining the (fast) parabolisation
- Adjusted k-\varepsilon turbulence model parameters in near wake to account for actuator disc assumption, based on:
 - Measurements from ECN's research farms and Horns Rev farm.
 - Detailed wake measurements in TUDelft wind tunnel currently analysed *)


Rotor Parameters

Name of concept ->	(1)RWT	(2)Upscale (3)Low Solidity (4)Upscale PS	(5) Higher Lambda	(6) Higher RPM (7)Higher RPM PS
Capacity [MW]	10	10	10	10
Tip Speed [m/s]	89.6	89.6	103.6	113.5
Lambda	7.5	7.5	8.66	9.50
Rpm	9.6	8.31	9.6	10.53
Radius [m]	89.2	103	103	103
P. Dens. [W/m²]	400	300	300	300

Number 8 and 9 is equal to 1 and 3, with ECN airfoils

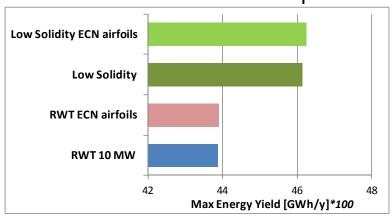
Rotor Concepts Compared



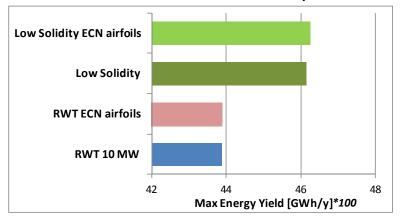
RESULTS rurbine 11, y/D = 0.1796 1,200 1,100 1,000 900 800 300 -

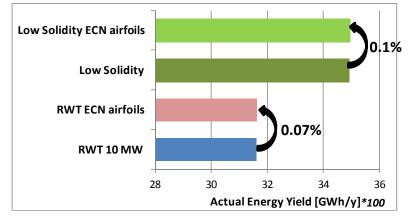
Wind turbine level comparisons

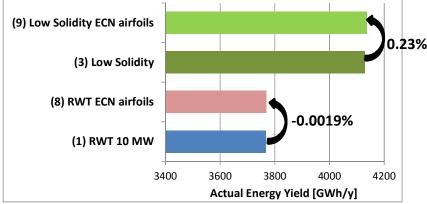
	AAFD	ΔMax. Fax
	[% RWT]	[% RWT]
(2)Upscale	10.8	10.7
(3)Low Solidity	5.2	-17.0
(4)Upscale PS	8.0	-17.0
(5) Higher Lambda	11.2	11.4
(6) Higher RPM	11.4	11.1
(7) Higher RPM PS	9.9	-11.7
(8) RWT ECN Airfoils	0.1	-4.0
(9) Low Solidity ECN A/f	5.5	-17.0


Wind farm level comparisons

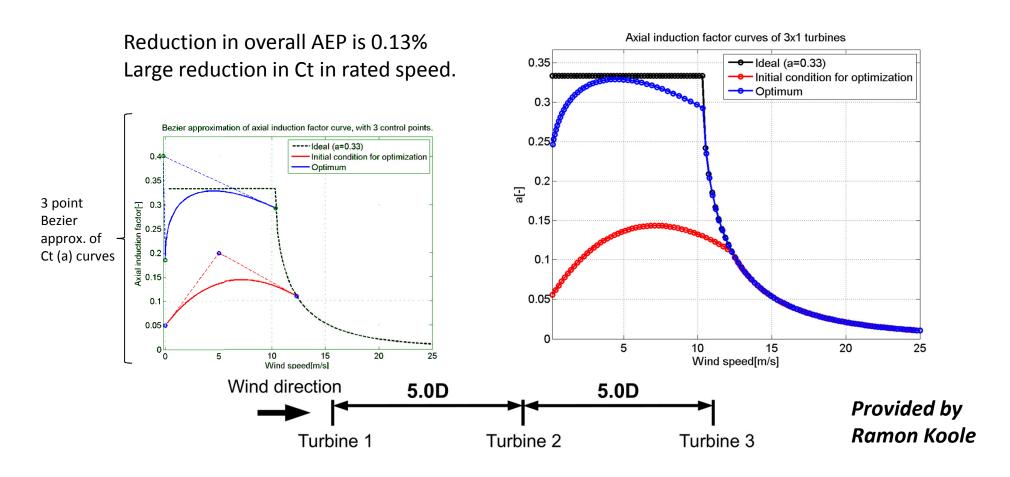
			<u> </u>	
	Absolute	e dist. kept	Relative dist. kept (7D east-west)	
	(2.7D e	ast-west)		
	ΔAEP [% RWT]	Efficiency [%]	ΔAEP [% RWT]	Efficiency [%]
(1)RWT		71.98	-	85.83
(2)Upscale	10.78	71.84	13.25	87.57
(3)Low Solidity	10.5	75.67	9.64	89.54
(4)Upscale PS	11.52	74.42	11.37	88.62
(5) Higher Lambda	11.2	71.97	13.56	87.64
(6) Higher RPM	11.39	72.09	13.64	87.71
(7) Higher RPM PS	11.6	73.15	12.9	88.24


Wind Farm Level – Effect of Airfoils




Absolute distances are kept

Relative distances are kept



Conclusions and Discussion

- Longer blades, more energy in wind farm independent from distances between turbines.
 Proven benefit of decrease in power density.
- Performance of the wind farm is more relevant than the performance of the individuals turbines in the farm.
- Effect of peak shaving strategy in power output of a wind turbine can be much less in a wind farm.
- These results are <u>highly</u> dependent on the chosen farm parameters and the <u>accuracy</u> of the models used. Nevertheless, they still indicate the potential of the integral design for future wind farms.
- Larger distances between the turbines in wind farm will lead to higher costs in other aspects,
 such as electrical infrastructure and O&M.
 - ECN's aerodynamic wind farm tool Farmflow has been linked with ECN's electrical wind farm tool EEFARM ¹)
- Next step is to design the turbines for farm operation.

1) J.G. Schepers et al: EERA-DTOC: How aerodynamic and electrical aspects come together in wind farm design EERA-Deepwind Conference, January 2014, Trondheim

What's Next?: #ECN Rotor Optimization for Farm Operation

