

Storing and refining seaweed

Storing and refining seaweed

André Wortel, Wouter.J.J. Huijgen & Jaap.W. van Hal

Germany, Hamburg 23rd June 2014

www.ecn.nl

Contents

- ECN
- Potential for Seaweed
- Seaweed biorefinery
- Seaweed storage
- Summary

Presentation download: www.ecn.nl

Energy research Centre of the Netherlands (ECN)

What do we do

 ECN develops market driven technology and knowhow to enable a transition to sustainable energy society

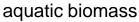
Business units

- Biomass & energy efficiency
- Solar energy
- Wind energy
- Policy studies
- Environment & energy engineering

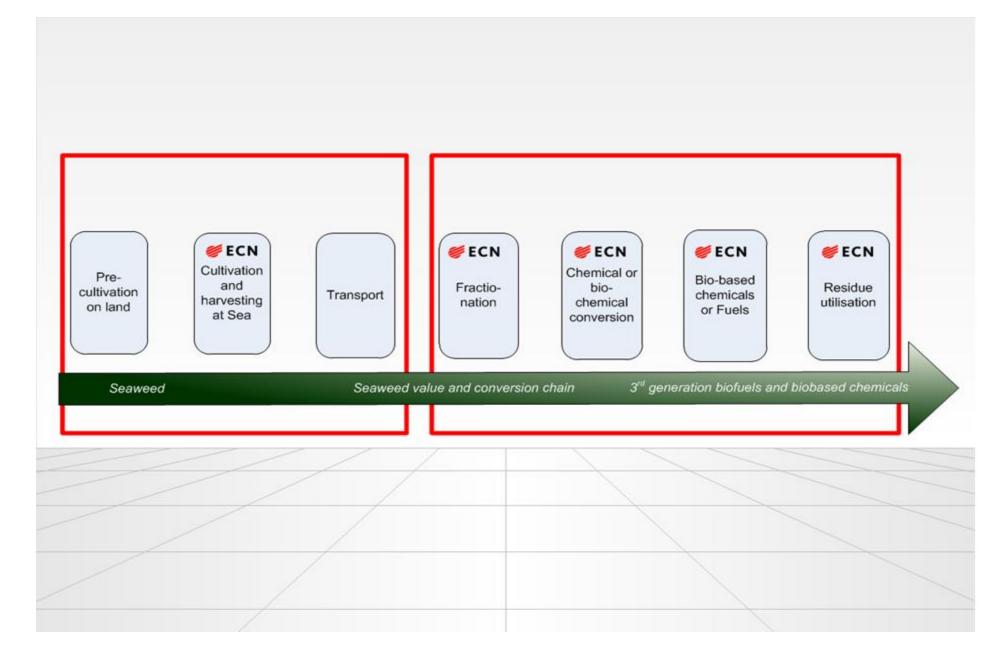
ECN

- Independent research institute
- ~600 employees
- Locations:
 - Petten (HQ)
 - Amsterdam
 - Eindhoven
 - Brussels
 - Beijing

Biomass – a diverse energy source


• Biomass = all organic material of non-fossil origin

meant for energy or chemicals/materials

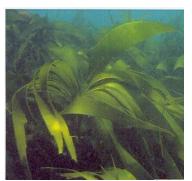

production

ECN

4

Seaweed species native to the North Sea

Saccharina latissima



Laminaria digitata

Alaria esculenta

EBC 2014

Laminaria hyperborea

Palmaria palmata

Ulva sp.

Potential for Seaweed

Seaweed cultivation potential

Potential (Florentinus et al, Ecofys, 2008)

_	Near off shore wind infrastructure <100km	110EJ	5.000.000km ²
_	Near coast <25km and in nutrient rich water	35EJ	1.700.000km ²
_	Global energy use	450EJ	

Marine spatial Planning

- Shipping lanes
- Military exclusion areas
- Nature 2000 areas

Ambitions

Scotland 15.000km²
 Norway 5.000km²

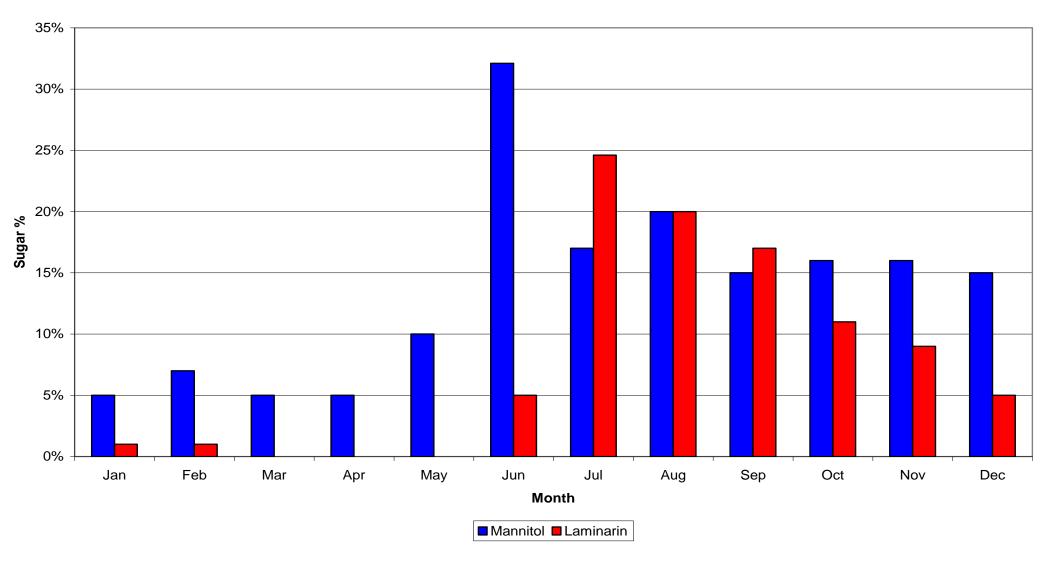
Example biorefinery

- 4 Offshore wind turbine parks of 50 km² = 200 km²

8

Lignocellulosic vs seaweed biomass

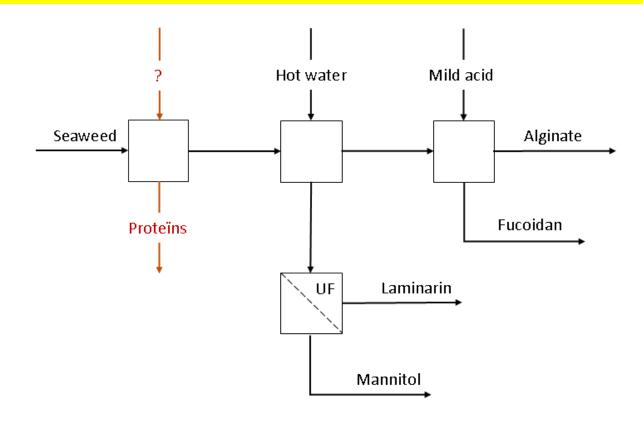
Lignocellulosic biomass


- Cellulose
 - Recalcitrant
- Hemicellulose
 - Easy to hydrolyse
- Lignin
 - Heterogeneous polymer (species etc. dependent)
- Ash
 - Low (wood) to medium (straw)
- Overall composition reasonably stable

Seaweed biomass

- Carbohydrates
 - Reducing sugars (xylose, rhamnose),
 sugar alcohols (mannitol), uronic acids
 (alginate), sulfated sugars (fucoidan).
 - Type dependent on species
- Proteins
 - Amino acid amount and composition dependent on species
- Ash
 - High (CI!)
- Large differences between seasons and location!

Laminaria Digitata



Seaweed biorefinery

Seaweed primary biorefinery

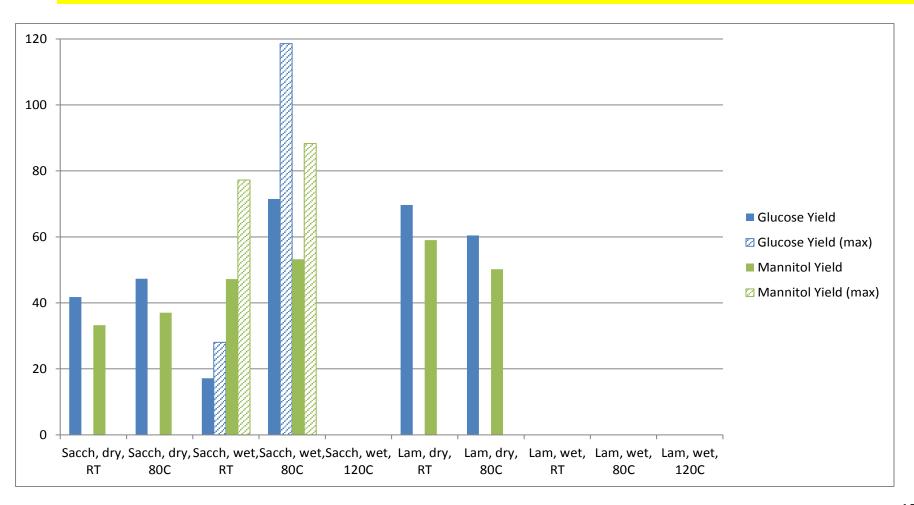
Patent filed on mannitol extraction from brown seaweed (Sept, 2012).

Key components

- Alginate
- Established market

Key components

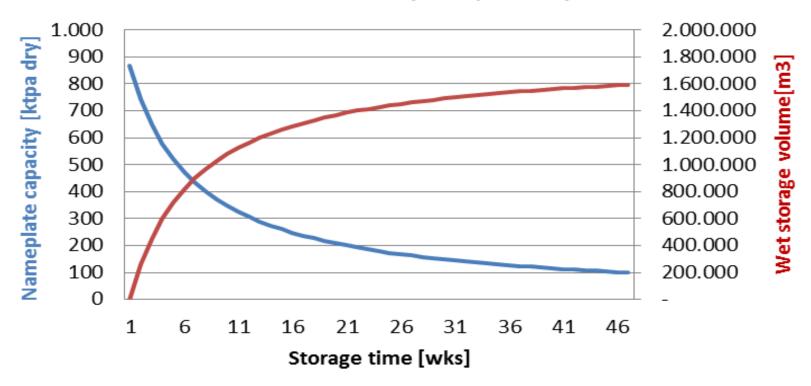
- Mannitol
- Conversion to high value Iso-mannide


Extracted mannitol

Purified mannitol

Iso-mannide

Mannitol / laminarin extraction results



15

Biorefinery capacity

Biorefinery capacity

16

Seaweed storage

Storage methods

Wet

- Wet seaweed contains 16% dry matter
- 6 tons of wet seaweed per dry ton
- 3 m³ storage volume per wet ton seaweed
- $-6x3 = 18 \text{ m}^3 \text{ Storage volume per dry ton}$

Dry

- Large energy consumption
- 5 tons of water vapor per dry ton seaweed

Preserved

- Silage of minced seaweed
- 1 m³ storage volume per wet ton seaweed
- Lactic acid, low pH, anaerobic preservation

Wet storage experiments

Parameters

- Cutting size: whole, 3 cm, minced
- Wet or drip dry
- Aerated or anaerobic
- Storage time: 1-75days

Wet storage experiments

- Results
- Optimal
 - Uncut/large cuts
 - Drip dry
 - Anaerobic

25 days

- Key components:
 - 30 days: 80% loss of Mannitol

15% loss of Alginate

- Safety
 - 75 days: Major release of H₂S gas

Dry storage experiments

Parameters

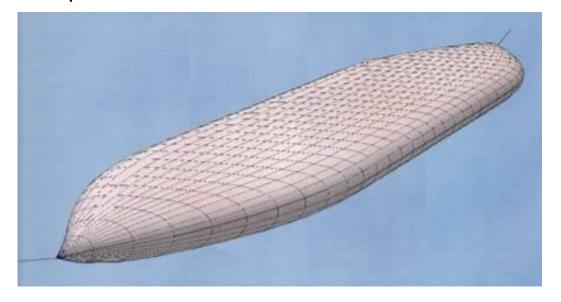
- Uncut leaves
- Weight reduction:20%, 50%, 80%
- Storage time 1-75days
- Monitor content key components
- Results
 - Ongoing work

Seaweed drying

- Harvest time 6 weeks
- 100 kton dry, 650 kton wet seaweed input
- Drying time 6hrs for 80% weight reduction

- Dryer
 - 650 ton per hour
 - 10 v% seaweed in drying sections
 - 120.000 m3 volume in drying sections
 - 350 MW power

Silage experiments


Parameters

- Minced seaweed, <3mm
- Simulate Lactid Acid Bacteria activity
 - 0.1%, 0.3%, 1%, 3% Lactic acid
- Storage time 1-75days
- Monitor content key components
- Results
 - Ongoing work

Seaweed silage

- 100 kton dry, 650.000 m3 minced wet seaweed
- Transport and storage in 50.000 m3 textile bags
- Reduced transport cost

24

Thank you for your attention

Visit ECN at the exhibition booth B11

wortel@ecn.nl Contact:

Presentation download: www.ecn.nl

The research leading to these results has received funding from the European Union's Seventh Framework Programme AT~SEAs project (FP7/2007-2013 – under grant agreement no. 280860).

