

Hybrid silica nanofiltration membranes with low molecular weight cut-off values

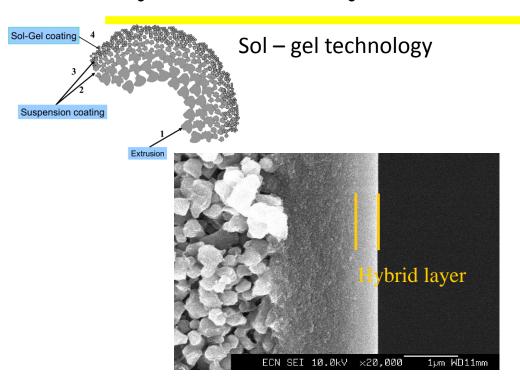
Henk van Veen, Marc van Tuel, Johan Overbeek, Marielle Rietkerk, Henk Marsman and Jaap Vente

ICIM XIII, Brisbane Australia 8th of July 2014

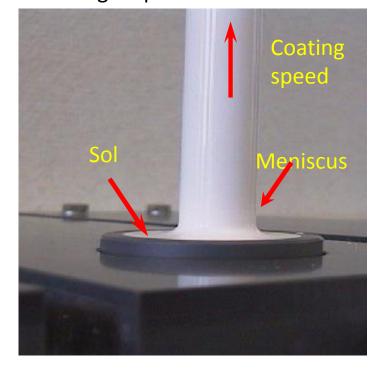
www.ecn.nl

Contents

- Introduction and background
- HybSi® and hybrid membranes
- Membrane preparation and results
- Conclusions

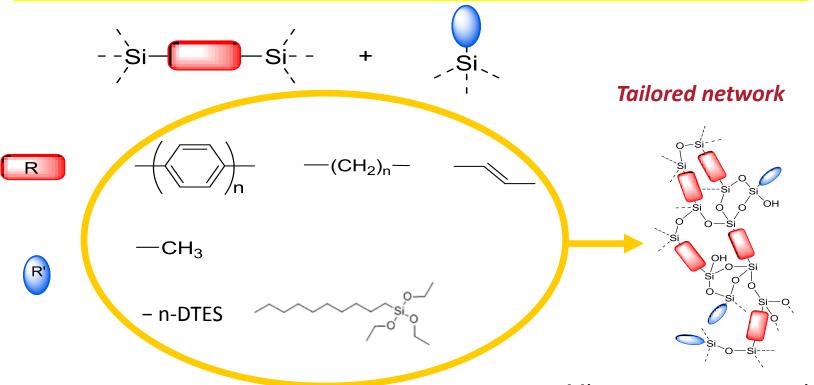


Introduction/background

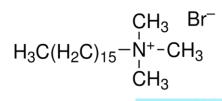

- Wish for organic solvent stable NF membranes: sharp MWCO 200-500 Dalton
 - Now available: polymeric, ceramic, porous/non-porous, asymmetric, integrally skinned composites, however, not meeting all demands
 - No swelling, predictable and stable (but tunable) flux
 - Permeance at least 0.5 kg/barm²h
 - Wide range of solvents (alcohols, ketones, aromatics, aprotics, solvent + water)
- Approach: apply a solvent stable hybrid silica layer on ceramic tubular support
- Basis is microporous HybSi® membrane: tailor pore structure to fit in with NF properties

HybSi[®] and hybrid membranes

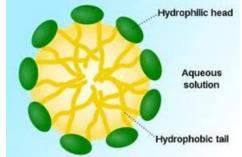
Coating step



HybSi[®] and hybrid membranes

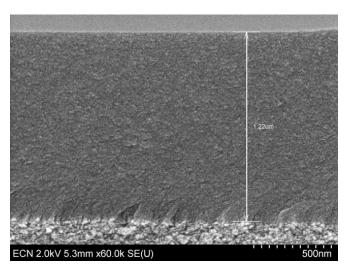

Microporous pervaporation membrane

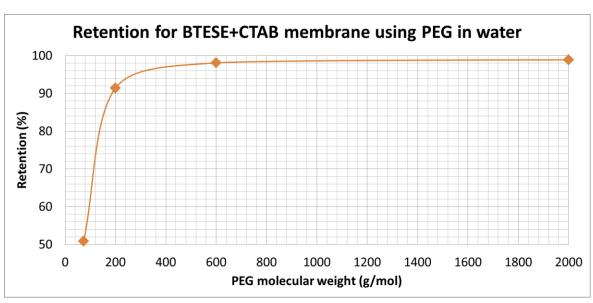
Membrane preparation



Precursor + structure directing agent for OSNF

BTESE, 1,2-bis(triethoxysilyl)ethane


IDEA


CTAB forms micelles which create a more open structure after removal from during the calcination

CTAB, Cetyltrimethyl ammonium bromide (ionic surfactant as template)

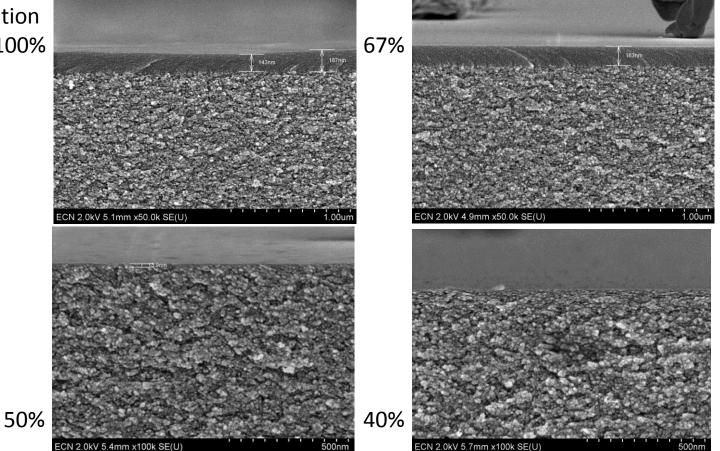
First results BTESE - NF membrane

90% retention: 180 Dalton

Thickness: 1220 nm

Water permeance: 0.006 l/barm²h (measured at 32 bar P_{feed})

Performance optimization


- Decrease of the membrane layer thickness
- Modify the pore structure by changing the sol recipe, like relative amounts of:
 - BTESE
 - CTAB
 - Acid
 - Water
- Design of experiment-like approach total of 24 different recipes tested, trends will be shown

Precursor chemistry (not presented here)

Thinner membrane layer

Sol concentration 100%

Thinner membrane layer

Membrane	Thickness (nm)	Water permeance (kg/bar.m².h)	MWCO for PEG in water (Dalton)
1	1220	0.006	190
2	375	0.009	180
3	14	0.010	180
4	< 5	0.015	180

A thickness reduce by two orders of magnitude

- \rightarrow a flux increase by a factor of 3,
- → MWCO remains low and constant

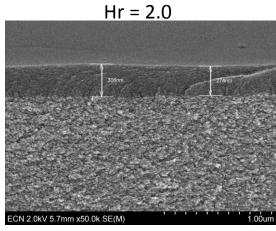
Sol Modification

- CTAB concentration trends:
- Low → Pervaporation quality
- Medium → Nanofiltration quality
- ◆ High → unstable sol, flocculation not suitable for membrane preparation

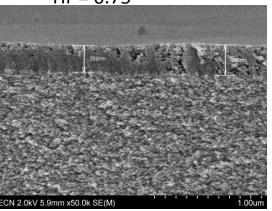
- Not surprisingly, micelle formation require a critical minimum concentration (CMC).
 - For CTAB in EtOH¹: 0.24 mol/L, in our sol \sim 0.2 mol/L

Hydrolysis ratio

Hr: Ratio water : ethoxy on the original precursor


- Small → Nanofiltration quality
- Medium → Pervaporation quality
- ◆ High
 → Unstable sol, flocculation

 Trend: a higher water content results in larger sol 'particles', as measured with Dynamic Light Scattering



Hydrolysis ratio

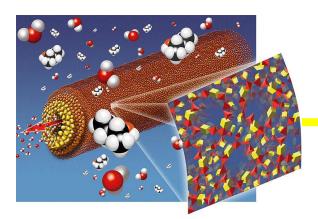
Hr = 0.75

• Smaller hydrolysis ratio:

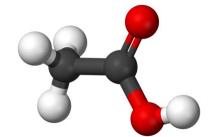
- Smaller particles
- less viscous sol
- Increased infiltration
- more open layer

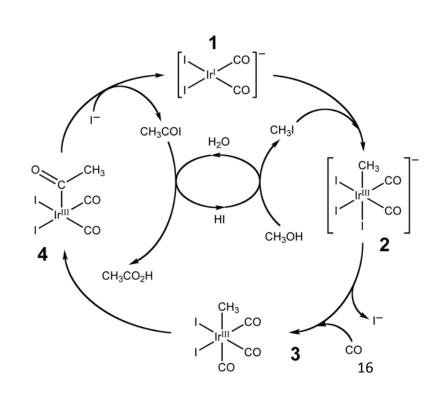
Sol modification

Hydrolyses ratio	Layer thickness (nm)	2		Retention PEG 1000
2.0	275	0.003-0.008	57%	84%
0.75	~ 250 infiltrated	0.02-0.06	65%	93%


A lower Hr leads to an:

- → Increased permeance
- → Improved retention


Conclusions


- Organic inorganic hybrid materials can be tailored towards NF membranes
 - By applying pore formers (CTAB)
 - By modifying the sol gel recipes and procedures
- The layer thickness has a limited influence on the permeance
 - Infiltration?
- Indication for infiltration of the sol in the support layer
- Performance
 - Retention of ~200 Dalton is possible
 - Fluxes/permeances are still lower than an industrial application would require

- More on HybSi
- 2 PM in this same hall!
- Revealing high acid resistance

Thank you for your attention

Part of this work was funded via the Dutch TKI-ISPT program within the cluster Energy Efficient Bulk Liquid Separations

ECN

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 88 515 49 49 info@ecn.nl F +31 88 515 44 80 **www.ecn.nl**

