

Technische uitdagingen in het Energy Island van biobased productieprocessen

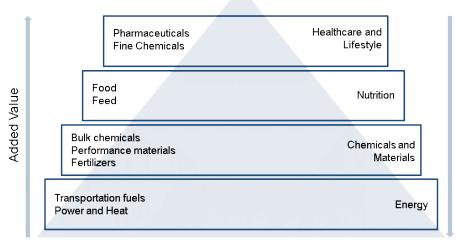
Technische uitdagingen in het *Energy Island* van biobased productieprocessen

IIR Congres Biomassa als grondstof voor de industrie – "Het groene goud van de toekomst"

Jaap Kiel, Mariusz Cieplik en Edze Diemer

RDM Campus, Heijplaat, Rotterdam 27 mei 2014

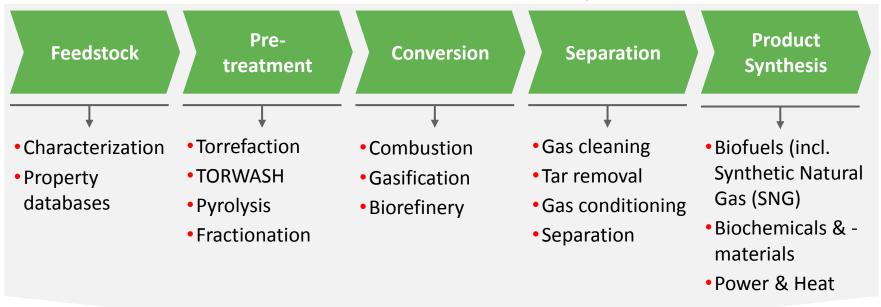
www.ecn.nl


Inhoud

- ECN Biomassa R&D: focus op thermochemische procesopties binnen biobased economy waardeketens
- Energie is een belangrijk onderdeel in biobased productieprocessen
- Reststroom-benutting voor energie is niet triviaal er zijn vele technische uitdagingen, maar ook mogelijkheden
- Slimme combinatie van praktijkmetingen en lab-schaal onderzoek en slim management van biomassa (reststromen) in het productieproces kan veel problemen voorkomen
- Ook voor reststromen is vaak energie en chemicaliën/materialen coproductie mogelijk (leidend tot extra toegevoegde waarde)

Biomass utilisation in transition

- From focus on bioenergy to focus on bioeconomy
- Cascading and biorefinery important
- Sustainability is complex issue (e.g., ILUC, C-debt)


But:

- Energy sector orders of magnitude larger than chemical sector
- Some parts of the energy sector difficult to cover with other renewables (e.g., biofuels for heavy vehicles, aviation, marine applications)
- Not all biomass qualifies for high-value applications (e.g., heterogeneous and/or contaminated streams)

ECN Biomass R&D

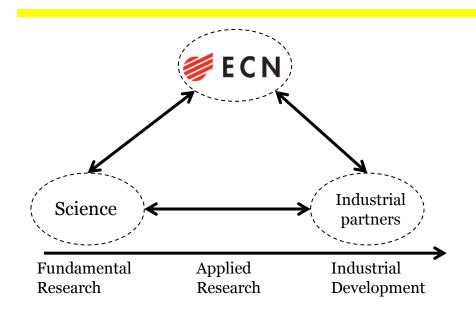
Focus on thermochemical processing

» Higher efficiencies, higher availability, lower environmental impact, higher public acceptance, lower CAPEX/OPEX, new applications

Feasibility studies, techno-economic evaluations, LCA, sustainability assessments

Four main ECN Biomass R&D areas

- Upgrading: Biomass to commodity fuel
 - Torrefaction: ECN technology available on full scale
 - New technology for torrefaction of wet biomass: TORWASH
- Combustion: Biomass boilers and Co-firing
 - Fuel behaviour during combustion
 - Ashes, slags, agglomeration behaviour
- Gasification: Production of power or fuels
 - Development of gasification technology (MILENA)
 - Tar removal (OLGA) and product synthesis
 - Test equipment and expertise to provide services
- Biorefinery: Technology for a biobased economy
 - Organosolv fractionation: conversion into cellulose, hemicellulose, and lignin
 - Conversion of fractions into marketable products
 - Seaweed biorefinery



ECN

Bridge between science and corporate innovation

What we do

Problem solving
Using our knowledge, technology, and facilities to solve our
clients' issues

Technology development

Developing technology into prototypes and industrial applications

Studies & Policy support Creating insights in energy technology and policy

How we can work with you

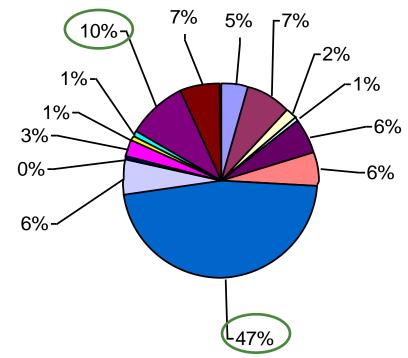
Consultancy & Services Serving your short-term business and R&D needs

Contract R&D

Support your R&D with our knowledge, technology and (test) facilities

Technology development & Transfer Implement our technology in products & processes

Joint Industry Projects
Developing tomorrow's technology together

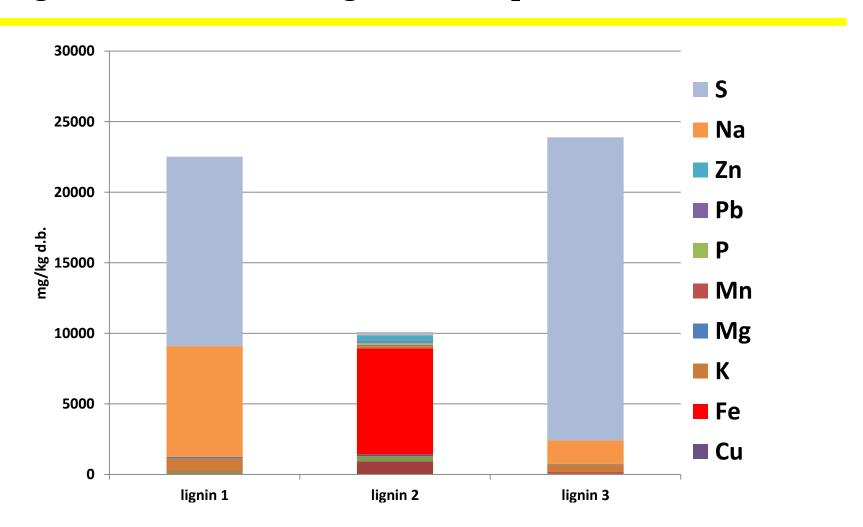

Lignocellulosic ethanol production

Straw-based, 100 t/h input, stand-alone plant

Estimated capital cost – Energy island major cost factor

2nd Largest investment: Pretreatment and pre-hydrolysis unit

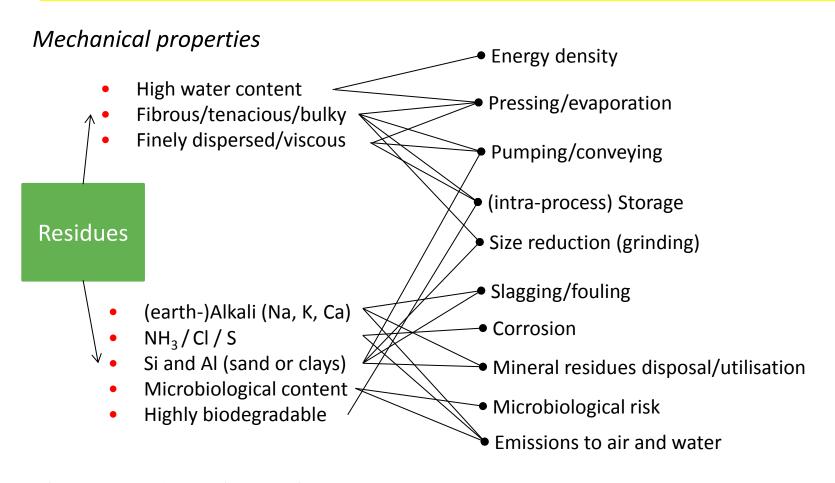
Largest investment: CHP unit


- Unit-100 M echanical pretreatment
- Unit-200a Pretreatment & pre-Hydrolysis
- □ Unit-200b Enzyme production
- □ Unit-300a Yeast production
- Unit-300b Hydrolysis & Fermentation
- Unit-400 Distillation & Dehydration
- Unit-500 Heat & power
- □ Unit-600 Water treatment
- Unit-700 Off gas cleaning
- Unit-800 Cooling system
- □ Unit-900 Raw materials storage
- Unit-1000 Product storage
- Working Capital
- Start-up costs

From: Final report, EET project K01116, 2007

Residues for heat and power

Large differences in (inorganics) composition



From: Beis et al. (2010), Bioresources 5(3), 1408-1424

Residues for heat and power

Technical challenges

Thermo- and Bio-chemical properties

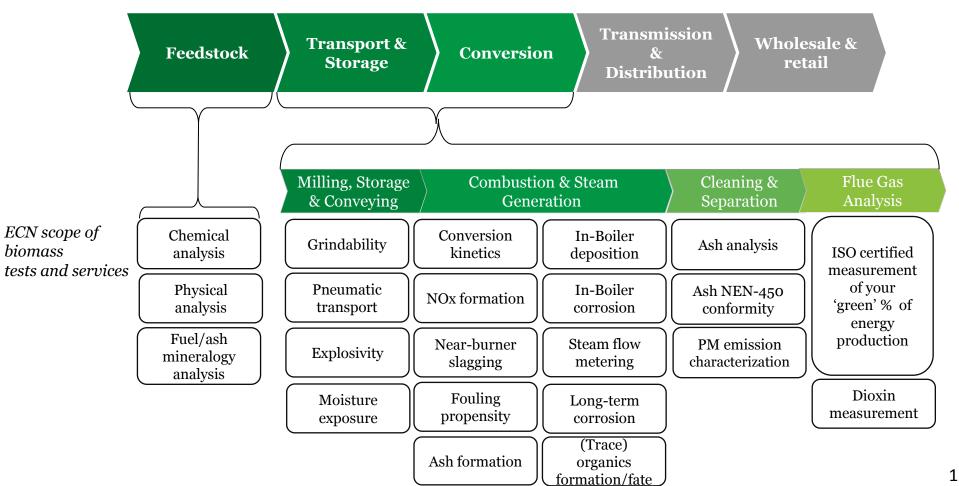
Know your process enemies


- Future Bio-based processes still in early stage of market introduction
 - Currently many residues only available on < 1kg scale
 - Large variations in compositions of seemingly similar residues ("Craft" lignin vs lignosulphonates vs organic extraction lignins)
 - Few pilot/demo plants doing energy recovery from residues, hence limited experience
 - E-technology providers are not willing to guarantee performance
- Solution: smart combination of lab-scale tests and pilot/full-scale diagnostics

Biomass Combustion: Service and Technology Offering

- Consultancy on available biomass types, analysis of biomass composition
- Lab-scale Combustion Simulator and Labscale Fluidised Bed (WOB) systems: validated against real life boiler data, suited for solid and liquid fuels, for combustion and gasification
- Bench-scale systems to test combustion, gasification or pyrolysis of all feedstock
- On-site measurement systems, such as gas analysis, probes for determining slagging and fouling, agglomeration
- Abatement of particulates, tars, NOx, and dioxins

Full-scale probe measurements


for in-boiler and stack emission diagnostics

Biomass combustion

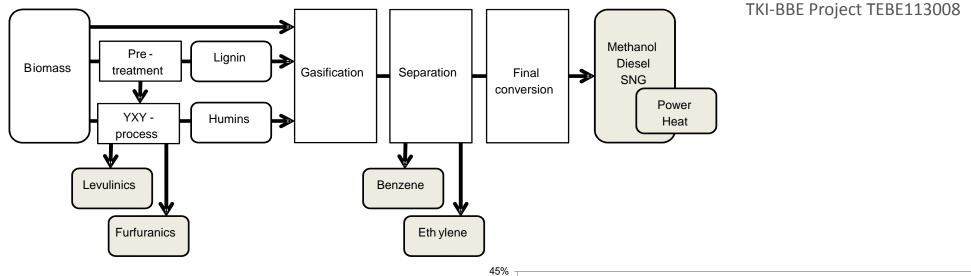
Overview of R&D services

Lab-scale Combustion Simulator (LCS)

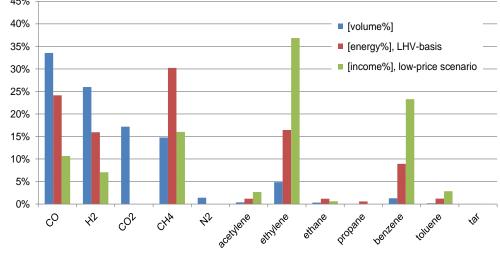
Mimic pulverised-fuel combustion <u>and</u> hightemperature gasification conditions

Special reactor design: 1-2s residence times with only limited total reactor length

Staged gas burner: high heating rate + proper gas atmosphere

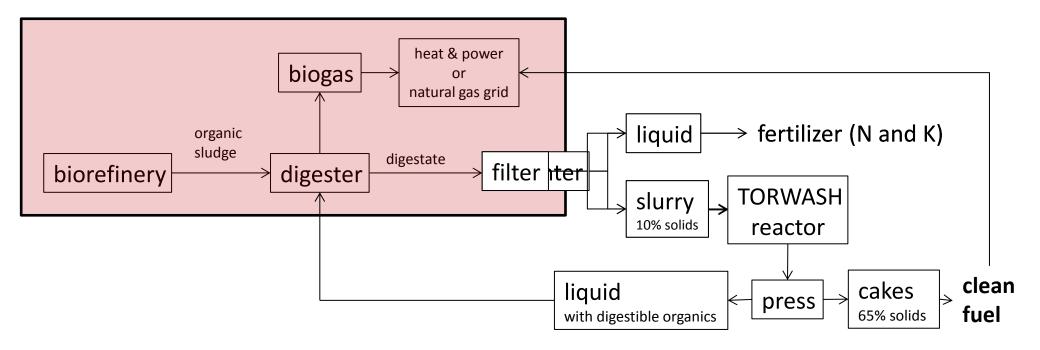

sampling probe

Particle


Example:

Co-production of bio-energy and green chemicals from biorefinery residues via gasification

Example of gas composition of fluidised-bed gasifiers. Composition depends on fuel and gasifier conditions. Double ethylene and benzene have also been measured.



Example:

Negative value solid residue becomes clean fuel by smart process integration

- Implementation of TORWASH process solves digestate problem!
- Also for wet residues from biorefinery and bio-ethanol production

Example:

Trace organics emission/abatement study for a leading biochemicals/bioplastics producer

Organic emissions sampling unit

Project target and scope

- Characterization and advice on operational improvement of a newly-developed thermal conversion process
- Focus on trace organics emission reduction

Activities

- Thermal conversion process characterization
 - Lab- through bench-scale tests at ECN
 - Pilot- and full-scale analytical and diagnostic assistance
- Trace organics emissions characterization
 - Formation and distribution amongst process streams
 - Interaction with (in)organic aerosol formation
 - Advice on process optimization and end-of-pipe abatement options

Results

Improved process control and end-of-pipe emission mitigation strategy

Thank you for your attention!

For more information, please contact:

Jaap Kiel

Programme Development Manager Biomass

T +31 88 515 45 90 F +31 88 515 84 88 kiel@ecn.nl P.O. Box 1, 1755 ZG PETTEN The Netherlands www.ecn.nl

