

Ways to increase the calorific value of gas from gasification

WAYS to INCREASE the CALORIFIC VALUE of GAS from GASIFICATION

Bram van der Drift Seneres workshop 12-13 May 2014, Warsaw, Poland

STATEMENTS

- Paradox 1: lower heating value feedstock = higher heating value gas
- Paradox 2: lower conversion = higher heating value gas
- Paradox 3: tar = higher heating value gas (also without the tar)

LHV: Lower Heating Value

HHV: Higher Heating Value

Tar: hydrocarbons larger than benzene

not including effects of water- and ash-content, so only considering dry and ash-free feedstock (daf)

Argument 1: Worse fuel has lower fixed carbon content

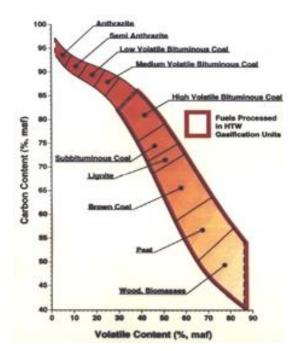
- Fixed carbon needs gasification: C + H₂O → CO + H₂
- This is very energy consuming (endothermal)
- This produces "only" CO and H₂, which are low LHV gases compared to e.g.
 CH4
- Lower fixed carbon content = higher volatiles content
- Volatiles lead to high yield of CH₄, C₂H₄, benzene, ...
- This reaction does not need much energy
- And CH₄, C₂H₄, benzene, ... have high LHV value

Argument 2: Worse fuel has higher O-content

- HHV = +34.1 [C] +132 [H] -12 [O] -12 [N] + 7 [S]
- Higher fuel-O means less has to be supplied by O₂ in the air
- This means less N₂
- Which means less N₂ dilution of the gas as well as less air is required to heat the reduced total gas volume
- So efficiency increases and gas-LHV increases

(if oxygen-blown, this arguments disappears)

	Oxygen-blown IGCC (Shell) on coal	Air-blown indirect gasifier (MILENA) on wood
Feedstock	Coal	Wood
LHV wet feedstock	24 MJ/kg	16 MJ/kg
Gas (<5% N ₂)		
LHV dry gas	10 MJ/Nm ³	15 MJ/Nm ³


Coal: 81% C_daf, 13% ash_dry, 10% water, 33 MJ/kg HHV_daf

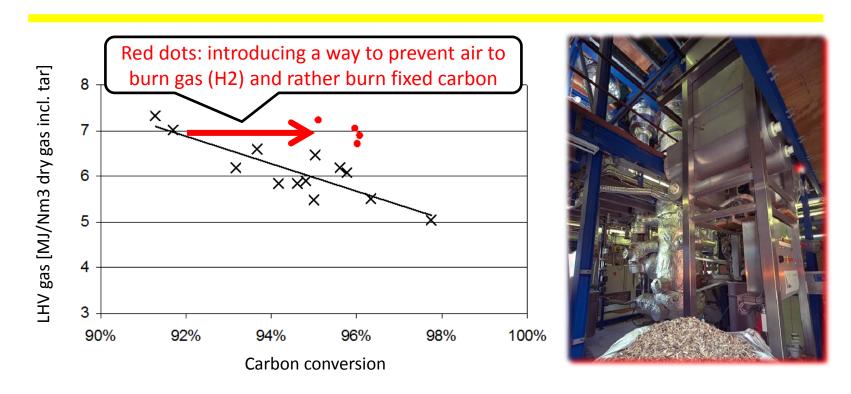
Wood: 50% C_daf, 1% ash_dry, 10% water, 20 MJ/kg HHV_daf

Arguments 1 and 2 are connected

- Biomass fuels with higher volatiles content (less fixed carbon) have higher O-content (lower Ccontent) and thus work the same direction
- Plastics are an exception: high volatile content
 AND high carbon content

Source: Uhde

LOWER CONVERSION = BETTER GAS

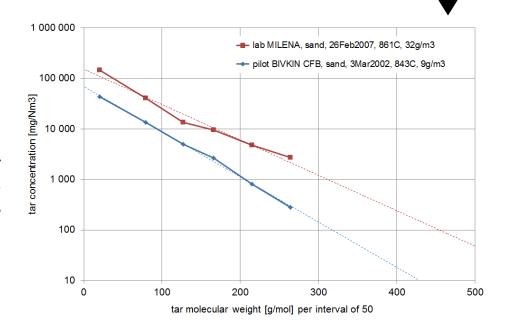


LOWER CONVERSION = BETTER GAS

- Gasification is a sequence of:
 - Devolatilisation (volatiles escape)
 - Fixed carbon conversion (real gasification)
- Volatiles lead to high LHV gas
- Fixed carbon leads to low LHV gas
- That means that gas-LHV reduces when conversion is beyond devolatilisation
- It however also means that a high gas-LHV comes with residual char/carbon, which is an energy efficiency loss
- This has a solution

LOWER CONVERSION = BETTER GAS

Tests performed in 0.5 MW air-blown CFB gasifier at ECN, various operating conditions, all based on clean wood, red dots are tests done with "staged gasification": feedstock feeding 1 meter up with internal ring within reactor below to prevent feedstock to fall down and devolatilize and meet air, Source: ECN-report ECN-C-03-053 (2003)


TAR = GOOD

TAR = GOOD

- Tar does not come alone: tar means benzene, ethylene, methane
- Higher yield of tars therefor means a higher gas-LHV
- It however, comes with a disadvantage: the tar itself
- This has a solution

Illustration of relation between hydrocarbon molecules in gasifier gas, range from methane to heavy tars in air-blown CFB (blue) and indirect gasifier (red), tests performed by ECN

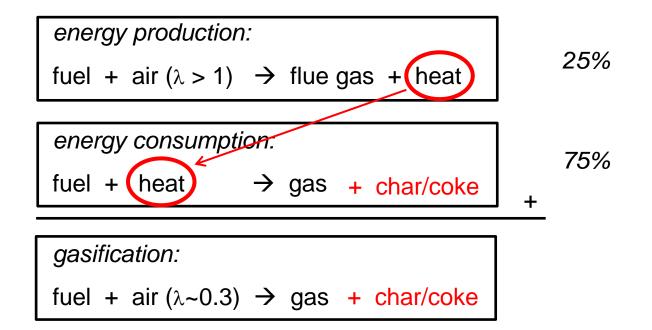
TAR = GOOD

- The presence of tar indicates a lack of catalytic reforming activity (by e.g. catalytically active bed material in fluidized bed)
- Less catalytic activity means water-gas-shift equilibrium is not reached
- Which means less H₂ + CO₂ and more CO + H₂O
- Which means more water in gas and thus higher gas-LHV on dry basis

Water-gas-shift reaction (a gas phase reaction):

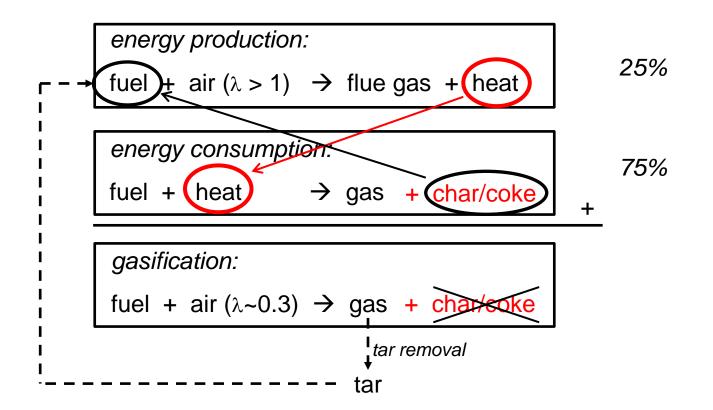
 $H_2 + CO_2 \Leftrightarrow CO + H_2O$

Gasification: it starts at the right side, thus shifts to more H_2 (and CO_2) if the reaction takes place

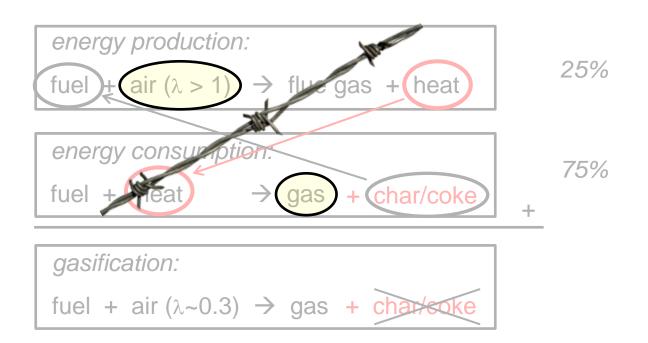

INDIRECT GASIFICATION

volatiles to gas and fixed carbon combustion

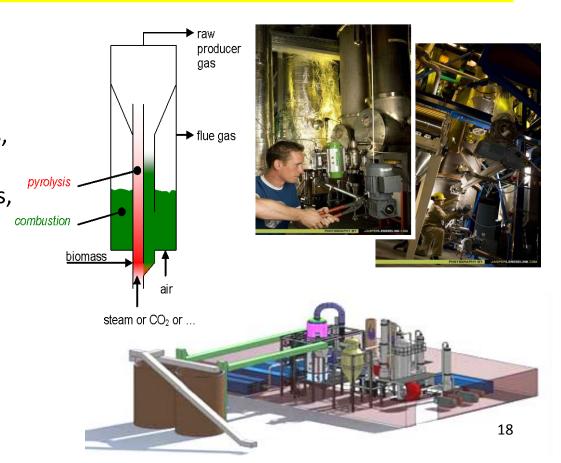
GASIFICATION


= matching energy

SECOND GENERATION


also called: indirect gasification

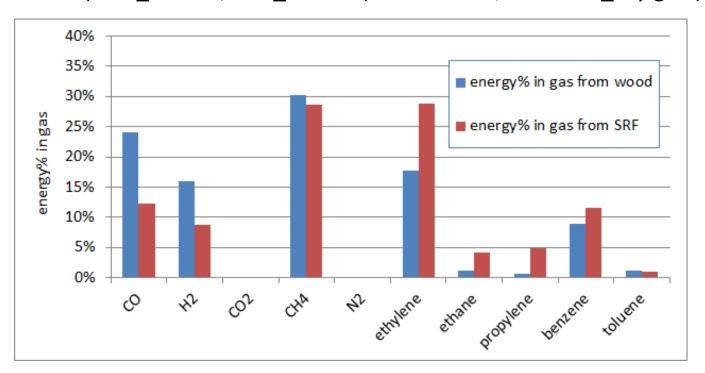
SECOND GENERATION


prevent air to meet gas!

MILENA TECHNOLOGY

- Highly efficient
- Complete conversion
- Fuel flexible, tested:
 wood, waste wood, grass,
 straw, soya residue,
 RDF/SRF, sunflower husks,
 DDB (straw residue from
 2nd generation ethanol),
 high-ash coal, lignite
- Compact
- Cheap
- Know-how based

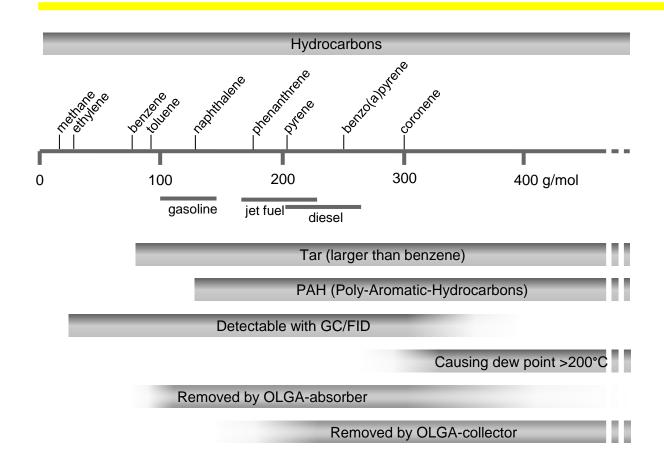
www.milenatechnology.com


PLASTICS as FUEL

WOOD and SRF

tested in MILENA indirect gasifier at ECN

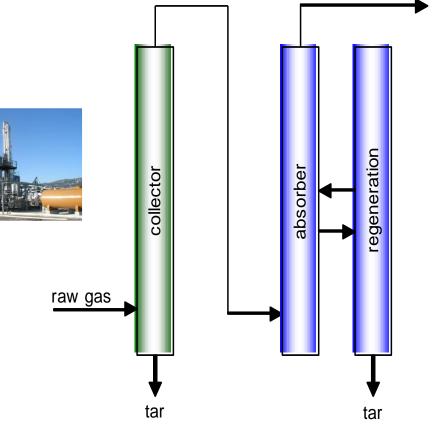
- Wood (HHV_daf=20, LHV_wet=17):
- 17 MJ/Nm3 LHV_dry gas (tar-free)
- SRF (HHV daf=28, LHV wet=21):
- 22 MJ/Nm3 LHV_dry gas (tar-free)



OLGA TAR REMOVAL

all the benefits of tar but without the tar

TAR


tar free gas

OLGA TECHNOLOGY

- Complete particles removal
- No methane removal.
- No ethylene removal
- Tar recycle

DVH TWV N 🐢

www.olgatechnology.com

FINAL REMARKS

- Increasing heating value of gas from gasification:
 - Use the bad fuels (but not because of high water or ash content)
 - Do not strive for complete conversion to gas
 - Do not strive for low tar in gas
- Solve the conversion problem by combustion of residual char, preferably using the heat for the gasifier itself (=indirect gasification technology)
- Solve the tar problem by low-temperature tar scrubbing, avoiding loss of e.g. methane and ethylene and using tar heating value as energy source
- Plastics form a different category: very high yield of "monomers" like ethylene and styrene, thus very high gas heating value

THANKS FOR THE ATTENTION

Bram van der Drift

ECN

Westerduinweg 3 P.O. Box 1

1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 224 56 45 15 vanderdrift@ecn.nl

M +31 610 909 927 www.ecn.nl

publications: www.ecn.nl/publications fuel composition database: www.phyllis.nl tar dew point calculator: www.thersites.nl IEA bioenergy/gasification: www.ieatask33.org

Milena indirect gasifier: www.milenatechnology.com

OLGA: www.olgatechnology.com / www.renewableenergy.nl

SNG: www.bioSNG.com /www.bioCNG.com

