

New Gas Sensors

New Gas Sensors

Final report

Wim Haije, Frits Bakker: ECN

Sander Gersen: DNV GL

Reinoud Wolffenbuttel, Ger de Graaf, Bernard Dam, Ruud Westerwaal: TU Delft

Sixth Research day, 24 April 2014, Nunspeet

Overview presentation

- 1. Project objectives
- 2. What has been done?
- 3. Valorization
- 4. Conclusions

Title Project: New Gas Sensors

Project number: A3

Theme 1: From Mono to Multigas, 1.3 Measurement techniques for

gas quality determination

Theme 2: Robust future energy systems, 2.2: Subprogram Flexible

energy conversion systems

Project leader: ECN

Research leader: Dr W.G. Haije

Partners: ECN, TUDelft TNW, TUDelft EWI, Gasunie (supported by

DNV GL)

New gas sensors project

Is it possible to demonstrate a gas meter and gas appliance with special sensors for safe and efficient use of new gases (hydrogen, biogas) in order to facilitate the transition to a sustainable energy infra structure in the most cost efficient way?

Objectives

- Overview of suitable sensors for new gas metering
- Development of an innovative hydrogen sensor, geared towards the aimed multi sensor concept, based on inherent safe principles
- Performance characteristics of potential sensor systems (range, accuracy, stability)
- Proof of principle of the combination of the preferred new gas sensor layout and the intelligent boiler/burner concepts
- Design of the sensor chip lay-out

Tasks

ECN

- Design and build sensor test rig
- Select sensors to be tested
- Perform the sensor tests

Tasks

DNV GL

- Define the new gas ranges
- Design and build test facilities
- Perform tests

Tasks

TU Delft, group R. Wolffenbuttel

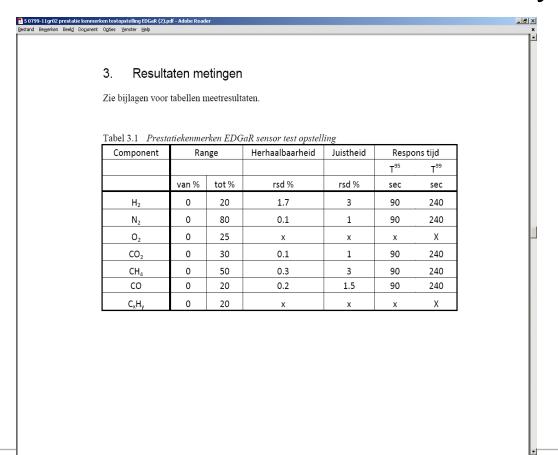
- Design and produce MEMS based new gas sensors
- Lab tests
- Field tests

TU Delft, group B.Dam

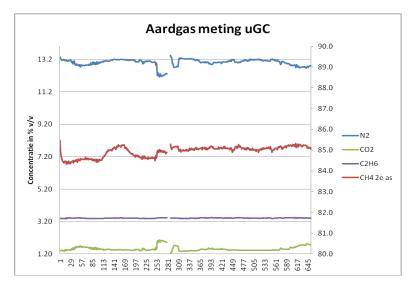
- Prepare optical hydrogen sensor for new gas application
- Lab tests
- Field tests

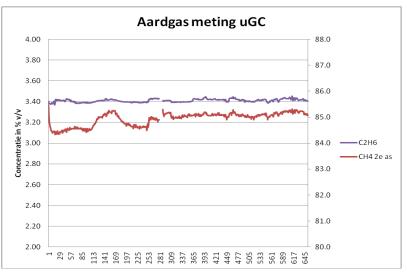
ECN

Design and build the test facilities



Performance characteristics test facility





Micro GC

⊯ECN

Field test			Ne (ppmv)		H2 (ppmv)		CO (% v/v)		CH4 (ppmv)	
			in	out	in	out	in	out	in	out
GC1 - BS #03	mean		66.9	66.8	401	568	0.803	0.843	105.0	23.0
	rsd	%	0.5	0.5	2.8	2.0	0.2	0.2	0.2	4.4
		n	270	1389	270	1391	261	1336	270	1383

Optical CO₂ sensor Vaisala

VAISALA

QUICK REFERENCE GUIDE

Vaisala CARBOCAP[©] Carbon Dioxide Module GMM111

- Compact flow aspirated CO2
 measurement module
- CO2 measurement range options of 0 ... 5 % CO2, 0 ... 10 % CO2 or 0 ... 20 % CO2

university of

groningen

- For OEM applications

@Valsala 2009. All rights reserved.

GENERAL

Visuals CARBOCAS[®] Cutton Districts Module OMMIII measure CO₂ connectations up to 3, 10 or 20 % depending on the choice of measurement range. The module features flow trough espiration and is intended for applications ratio incubators and bioreaction GMMIII powers up from 24 DOFAMC and growther both voltage and current groups outputs. The module also supports digital RS483 communication.

ELECTRICAL CONNECTIONS

Make the connections according to the table below. See Figure 1 helow the table for wire terminals

mA	Signal 4 20 mA
V	Signal (+) 0 10 V
0	Signal (-)
В	RS485 Signal B
A	RS485 Signal A
0	Power supply (-)
24V	Power supply (+) 24 VDC/VAC

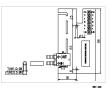
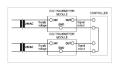


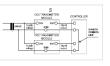
Figure 1 Module Connections and Dimensions

Powering

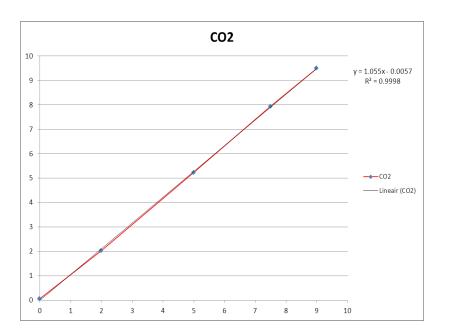
The module requires a nominal $24\,\mathrm{VDCNAC}$ power supply maintaining a voltage of $18\dots30\,\mathrm{VDC}$ or $20\dots26\,\mathrm{VAC}$ for all load conditions and all mains voltages. Although the power injust includes a half-wave rectifier, it is recommended to use a DC supply to evolution current peaks.


Connections to 24 VAC Power Supply

Connecting more than one module to a single 24 VAC transformer forms a common loop and increases the risk of a short-circuit. Therefore, a separate floating supply for each module is recommended (see Figure 2).


If several modules share a common transformer, the phase (~) must always be connected to the 24 V connector in each module (see Figure 3).

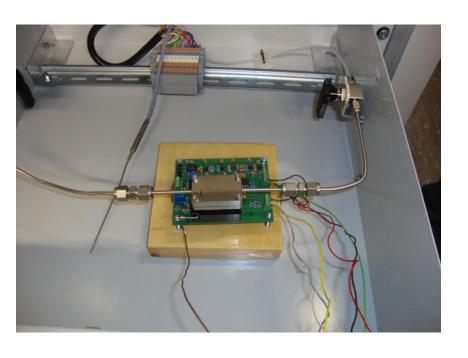
GAS SAMPLE CONSIDERATIONS

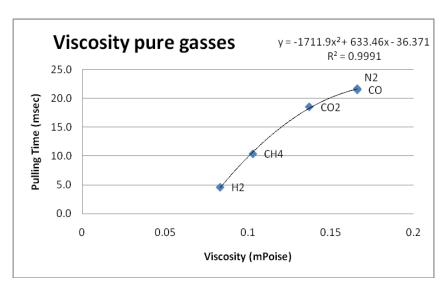

The unit has been designed for strictly non-condensing conditions if the gas sample is drawn from humid conditions, special care must be taken to prevent condensation from occurring in the sensor. In practice this means lowering the dewpoint of the gas sample below the sensor temperature, for example by drying the sample gas.

Pigure 2 Connection of Separate AC Supplies (Recommended)

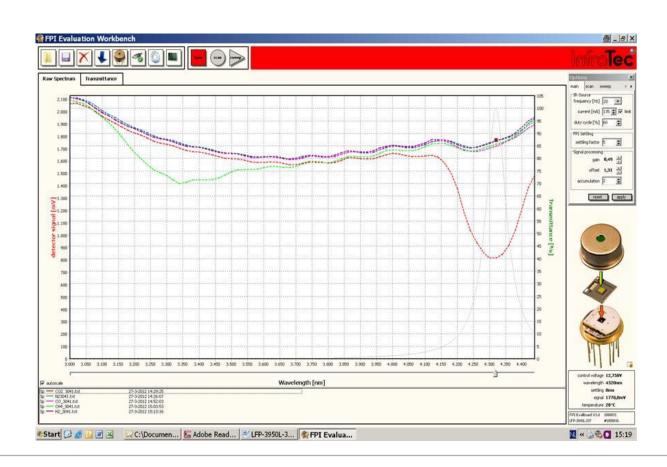
Pigare 3 Connection of Single AC supply to Several Modules

⊯ECN



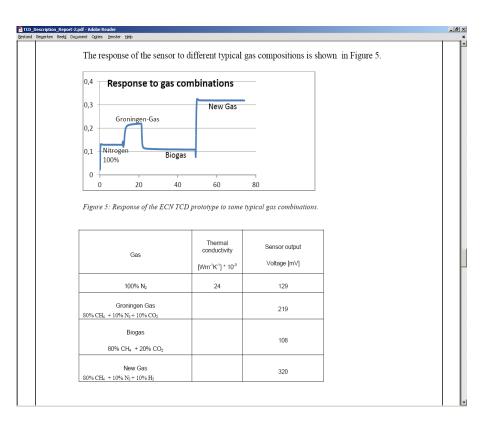


Viscosity sensor TUD

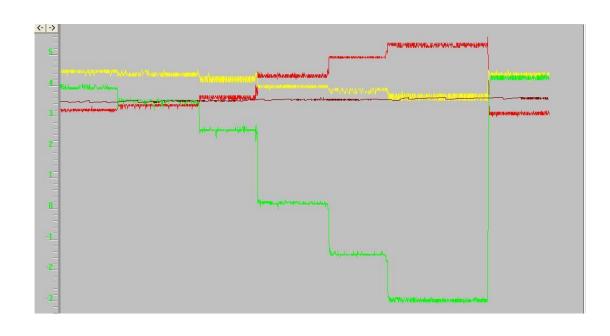


Tunable FP IR sensor

⊯ECN



TCD sensor TU Delft



Calorimetric sensor TU Budapest

Summary sensor tests

	uG C	CO ₂ IR	Tunable FP	TC D	Viscosit	Calorimet er	Hydrog en
Range	000	000	00	000	000	00	00
Linearity	00	0000	00	000 0	00	0	000
Accuracy	000	000	00	000	00	0	000
Response	00	0000	0000	000	0000	0000	000
Selectivity	000	0000	000	00	00	0	0000
Stability	00	0000	00	000	0	0	000
Maintenanc e	0	0000	00	000	00	00	00
MEMS ready	0	00	000	000	0000	0000	0000

o = poor, oooo = excellent

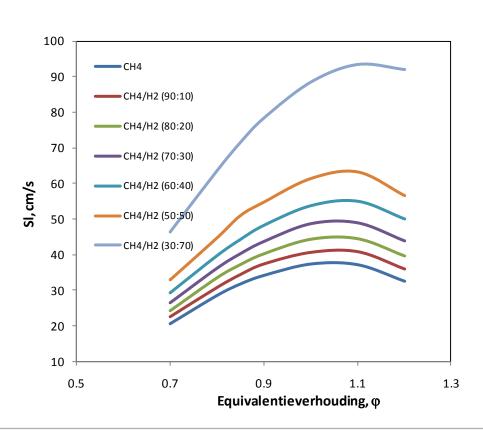
DNV GL

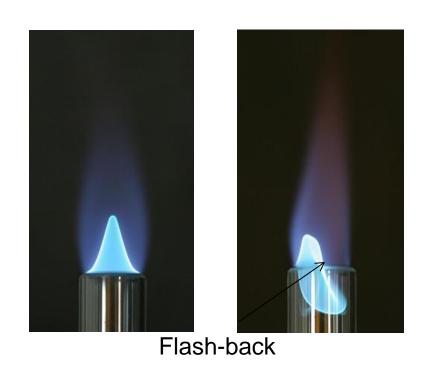
Goal:

 Developing and demonstrate a novel type gas appliance ("New Gas Appliance") that can accept any type of gas

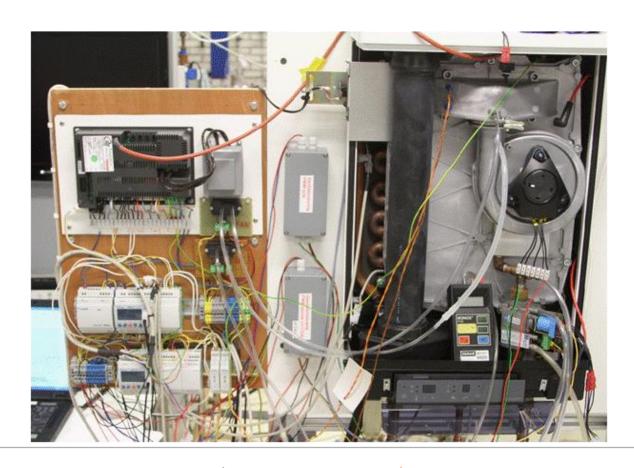
Why?

- Current used gas appliances are fit to traditional natural gas supplied (CH₄, C₂H₆, C₃H₈, and higher)
- Different composition can result in undesired behavior in end use appliances (related to combustion properties)

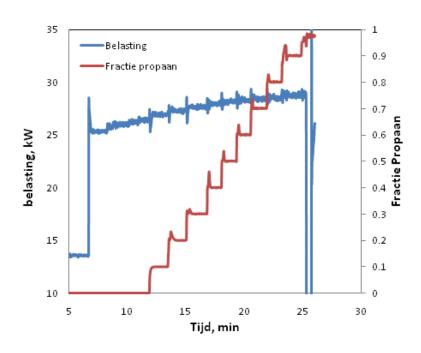



alliander

Impact H₂ addition to CH₄ on the burning velocity



Boiler and control system



Effect of propane addition to methane (maximum load)

Conclusion

- Boiler shows good performance for the following range of tested gaseous fuels
 - CH_4/H_2 up to 60% H_2
 - CH_4/C_3H_8 up to 100% C_3H_8
 - CH_4/CO_2 up to 50% CO_2

Conclusion

 H₂ addition results in an increase in the temperature of the burner surface

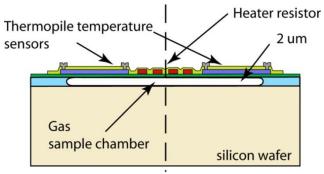
 Addition of H₂, CO₂ and C₃H₈ results in a deviation between the air factor calculated by the algorithm and the measured air factor

TU Delft EWI

Thermal conductivity detector (Ger de Graaf

Viscosity sensor: Luis Rocha, Rosana Dias (Univ. of Minho)

IR absorption: LVOF (Arvin Emadi)

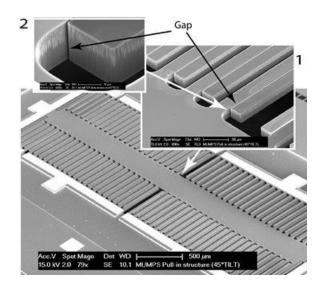


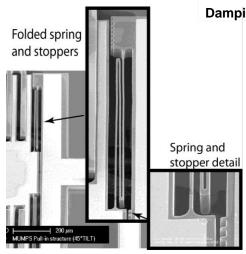
Thermal conductivity detector

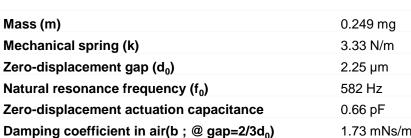
Cross section

Dedicated electronics has been built

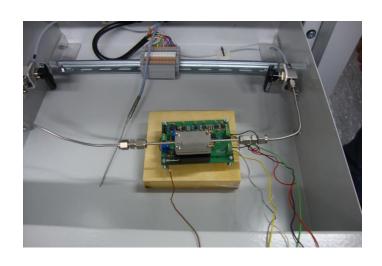
AC modulation for high performance





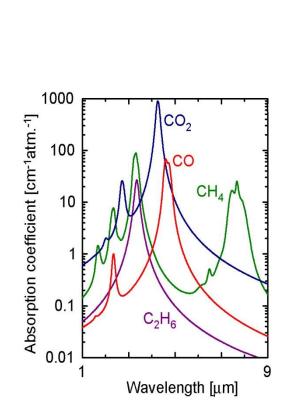


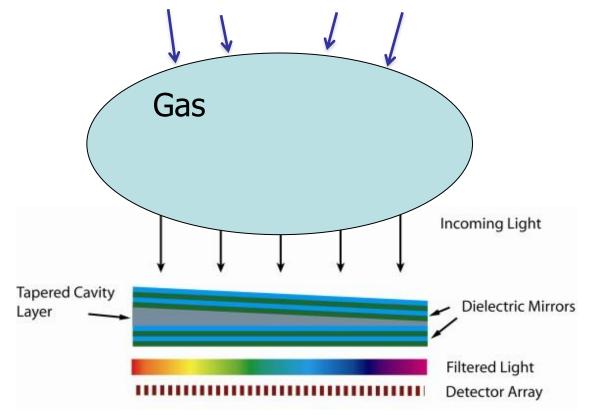
Viscosity detector MEMS



Tests at ECN

October 2011





LVOF Infrared Filter

Broadband infrared source

May 2, 2014

STW project

STW 11476: Microsystem for Multi-Gas Analysis Amir Ghaderi Pelin Ayerden

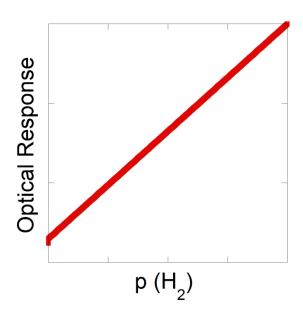
May 2, 2014

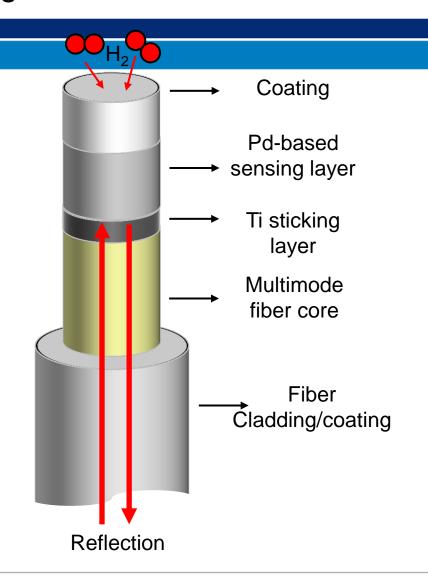
TU Delft TNW

- Prepare optical hydrogen sensor for new gas application
- Perform field tests at ECN and DNV GL

Project outline and goals TUDelft/MECS

- Develop an optical sensor for the required range of hydrogen pressures (1-300 mbar).
 - Various pressure threshold level detectors.
 - Single sensor material which shows a continuous optical change with increasing hydrogen pressure.
- Test and optimise the detector under realistic conditions.
 - Test the selectivity of the catalytic layer/sensor
 - Test the influence of other gas components/impurities: CO, H₂S, and SO_x, on the Pd-based layer
 - Test and optimise the developed protective coatings.
- A new design readout system should be made which is cheap and reliable and easily integrated without standard (PC) readout systems.
- An optimal sensor design should be tested under realistic conditions to determine the lifetime, accuracy and typical failure modes.




Energy Delta Gas Research Continuous hydrogen sensor: Pd-Ta

Sensor → **Quantitative** information

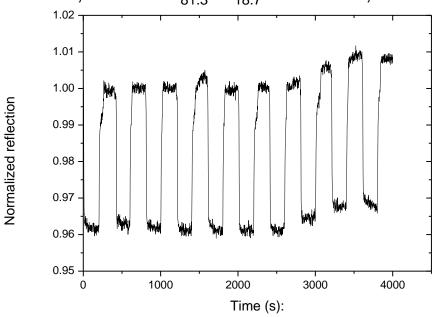
Continuous Sensor

Well-defined relationship between optical response and H₂ pressure

Protective coating against CO contamination

Tested Coating materials for the EDGaR project:

- PTFE (polytetrafluorethyleen, slows down CO blocking by diffusion)
- HDPE (high-density polyethylene, unable to deposit by sputtering)
- FEP (Fluorinated ethylene propylene, slows down CO blocking by diffusion, better than PTFE)
- Nanostructured Al₂O₃ caplayer (no improvement)
- Pd-PTFE composite (no improvement)*
- MOF (possible solution, but a suited pore diameter is required)
- PMMA (Promising but to be tested)



A continuous H₂ sensor: Limitation CO influence

200 nm PTFE, 30 nm Pd_{81.3}Au_{18.7} 200ml/min, RT

- Loading step 1%
 H₂+0.0018% CO
- Unloading step 1% O₂
 in Ar
- No influence of CO during cycling!
- 2CO+O₂->2CO₂
- The influence of CO can be limited by the presence of O₂ in the feed flow
- It depends on the gas mixture if there is a large influence of CO.

Conclusions H₂ sensor

- A linear H₂ sensor has been demonstrated (Pd-Ta: 300mbar, Pd-Au: 200mbar)
- These sensor materials show a high stability and reproducibility
- The sensor is able to operate in the presence of Ar, O₂, CO₂, CH₄
- The sensor is very sensitive towards CO and the tested coatings are unble to prevent contamination
- The influence of CO can be strongly reduced by the presence of O₂
- The sensor has been tested under the most realistic conditions we can apply

Putting all together: Multi sensor scheme

- •Tunable Fabry-Perot sensor (CH₄, CO₂, C₂H₆, C_xH_y, CO)
- Optical Hydrogen sensor
- Thermal Conductivity sensor

With this configuration it will be possible to calculate the energy content of the gas and predict the combustion behavior. For high precision determination of the energy content a direct measurement principle is required, more work will have to be done to improve the performance of the calorimetric sensor that we tested. An alternative might be the use of a micro (solid oxide) fuel cell.

In the meantime

Measuring viscosity of new gas and electrical properties (capacity measurements) are well possible with MEMS based devices. These parameters can contribute to the quality of measured values and might enable calculation of the nitrogen content of new gas.

An improved version of the tunable Fabry-Perot sensor system became commercially available. This version has been tested extensively at KEMA. They concluded that this version was able to determine CH₄, CO₂, C₂H₆ and higher hydrocarbons with sufficient accuracy.

Valorisation

- Road to value, ECN valorization study
 - Gasunie
 - TAQA

Result; interesting but only relevant > 2020

- 2. Patent on multi sensor chip filed but not submitted
- SBIR project H-gas sensor
 - SBIR 1 part feasibility study granted, no follow up
 - SBIR 2 not granted
- 4. EDGaR Parel (capacity sensor) granted

GasTerra

Objectives

- ✓ Overview of suitable sensors for new gas metering
- ✓ Development of an innovative hydrogen sensor, geared towards the aimed multi sensor concept, based on inherent safe principles
- ✓ Performance characteristics of potential sensor systems (range, accuracy, stability)
- Proof of principle of the combination of the preferred new gas sensor layout and the intelligent boiler/burner concepts (done with individual components)
- Design of the sensor chip lay-out (on component level)

New Gas Sensors project, conclusions

- 1. Suitable optical and physical 'MEMS ready' sensors are available
- 2. Optical hydrogen sensor successfully demonstrated
- 3. Gas boilers can be adapted to accept changes in gas composition
- 4. For industry too early to start development of new gas sensor chip

alliander

Nederlands

Het onderzoeksprogramma EDGaR is erkentelijk voor de bijdrage van de financieringsinstellingen:

Samenwerkingsverband Noord Nederland.

Dit project wordt medegefinancierd door het Europees Fonds voor Regionale Ontwikkeling en door het ministerie van Economische Zaken. Cofinanciering vindt eveneens plaats door de Provincie Groningen. The research program EDGaR acknowledges the contribution of the

funding agencies:
The Northern Netherlands Provinces (SNN).

This project is co-financed by the European Union, European Fund for Regional Development and the Ministry of Economic Affairs.

Also the Province of Groningen is co-financing the project.

English

