

Evaluation of the Dutch Decree on emission limit values for mediumsized combustion installations – five potential restrictions

Nice October 18th, 2013

www.ecn.nl

Content

- Environmental legislation in the Netherlands
- NO_x: environmental issue in the Netherlands
- Stationary engines short background
- NO_x and C_xH_y ELV for gas engines
- NO_x and dust ELV for diesel engines
- Conclusions

Environmental legislation in the Netherlands

- In April 2010, the Dutch Decree on emission limit values (ELVs) on mediumsized combustion installations (< 50 MW_{th}) (in Dutch: Bems) entered into force
- The Dutch government aims to simplify environmental legislation
 - \rightarrow Shift several decrees into one Activities Decree
 - \rightarrow Set more common rules for companies
 - \rightarrow Less permits for companies are requested
- Since January 2013, the Bems decree has been incorporated into the Activities decree (§ 3.2.1)
- Evaluation of the Bems decree

ECN Environmental legislation in the Netherlands

- The evaluation of the Bems decree was performed by ECN, Infomil, the Dutch Ministry of Infrastructure and Environment and several stakeholders
- The evaluation tackled various scopes
- Special attention to five potential further restrictions, which were considered at the time of commencement of the Bems decree

👹 ECN

Environmental legislation in the Netherlands

Five potential further restrictions

- → NO_x ELV for natural gas and biogas engines (< $1 \text{ MW}_{e}/2,5 \text{ MW}_{th}$) at 100 mg/Nm³ at 3% O₂ (currently: 340)
- → C_xH_y ELV for natural gas engines (≥ 1 MW_e/2,5 MW_{th}) at 1200 mg/Nm³ at 3% O₂ (currently: 1500) → "methane ELV"
- → Currently no C_xH_y ELV for natural gas and biogas engines (< 1 MW_e/2,5 MW_{th}). The Ministry: are there arguments to set an ELV?
- \rightarrow PM ELV for diesel engines at 15 mg/Nm³ at 3% O₂ (currently: 50)
- \rightarrow NO_x ELV for diesel engines at 140 mg/Nm³ at 3% O₂ (currently: 450)

Environmental legislation in the Netherlands

- Natural gas engines relevant in NL:
 - \rightarrow ~4250 stationary gas engines
 - \rightarrow of which, ~3000 (< 1 MW_e/2,5 MW_{th})
 - → of which, ~1650 in Agricultural sector, ~450 in Health care sector, ~450 in Services sector

NO_x: environmental issue in the Netherlands

- Dutch NO_x emissions in 2010: 274 kton (NEC definition; source: CBS, ECN & PBL)
 - Of which: 59% due to traffic, 12% and 11% due to Energy and Industry sectors,
 4% combustion installations in greenhouse horticulture
- In 2010: Dutch NO_x-emissions were above the NEC ceiling. Other NEC emissions were below NEC ceiling.
- In 2012: NO_x hotspots in NL above 40 μg/m³, i.e. above European standards

Stationary engines – short background

Air Excess (lambda)

NO_x ELV for gas engines

Alternative: run engine stoichiometric:

- 3-way catalyst (cheap!)
- Efficiency improvement via new technology: cooled EGR

Majority of engines at high lambda to increase (mechanical) efficiency. Potential after-treatment: SCR.

- \rightarrow Not cheap
- \rightarrow But: applied several times in horticulture
- → Moreover: prices have gone down

NO_x ELV for gas engines

→ Catalytic after-treatment with SCR or 3-way catalysts commercially available

- Proposed further restriction: from 340 to 100 mg NO_x/Nm³ at 3% O₂
- Already similar ELVs in Californian regions and Swiss regions
- Achieving 100 mg NO_x/Nm³ technically difficult with 3-way catalyst
- Advise: consider ELV at 140 mg NO_x/Nm³ at 3% O₂
- → For engines running on particular biogases:
- Contaminants may affect the after-treatment catalysts, e.g. siloxanes in sewage treatment biogas
- Activated carbon filters commercially available
- Advise: consider similar ELVs biogas engines as compared to natural gas engines

C_xH_y ELV for gas engines

- C_xH_y ELV for natural gas engines ($\geq 1 MW_e/2,5 MW_{th}$) from 1500 to 1200 mg/Nm³ at 3% $O_2 \rightarrow$ "methane ELV"
- Currently no C_xH_y ELV for natural gas and biogas engines (< 1 MW_e/2,5 MW_{th}). The Ministry: are there arguments to set an ELV?
- \rightarrow Application of gas engine as CHP saves CO₂ emissions
- \rightarrow Methane slip partly counteracts realized CO₂ savings

	CO₂ reduction without methane slip	CO ₂ reduction at CH ₄ emission of 1200 mg C/Nm ³	CO ₂ reduction at CH ₄ emission of 1500 mg C/Nm ³
Case large gas engine	26%	15%	12%
Case small gas engine	20%	8%	5%

Case large gas engine: 41% _{electrical efficiency} 49%_{thermal efficiency} Case small gas engine: 34% _{electrical efficiency} 52%_{thermal efficiency} Reference electrical efficiency: 50.5% Reference heat efficiency: 90%

C_xH_y ELV for gas engines

C_xH_y ELV for gas engines

- New engines can already meet the proposed ELV
- Some manufacturers: change engine design or cannot sell
- For existing engines aftertreatment is commercially available
- → Advise: consider the proposed ELV for new engines and consider a transitional arrangement for existing engines
- Small gas engines and biogas engines emit substantial less methane
- Stricter NO_x-ELVs may result in leaner operation of small gas engines
- \rightarrow Advise: consider the current C_xH_y ELV also for small gas engines to restrict potential increasing methane emissions due to leaner operation

Dust ELV for diesel engines

- Proposed further restriction: from 50 to 15 mg PM/Nm³ at 3% O₂
- (Commercially available) filter technology needed
- Dust filters require relative high-quality diesel (ULSD)
- Germany has similar ELV as proposal
- In USA, stricter ELVs will phase in from 2015 onwards
- Advise: consider implementation ELV at the same time as USA

$\mathrm{NO}_{\mathrm{x}}\,\mathrm{ELV}$ for diesel engines

- Proposed further restriction: from 450 to 140 mg NO_x/Nm³ at 3% O₂
- Proposed ELV near Euro VI for diesel trucks \rightarrow SCR commercially available
- Stationary diesel engines often large power capacity
- Low rpm, high cylinder volume \rightarrow increase of NO_x emissions
- In USA, strict ELVs will phase in from 2015 onwards (variable in power, rpm and cylinder volume) → 150 till 1350 mg NO_x/Nm³ at 3% O₂
- Advise: consider ELV at 250 mg NO_x/Nm³ at 3% O₂
 Keep timing in line with introduction USA ELV for diesel engines
 <10 L per cylinder

Conclusions

- Current ELVs belong to strictest of Europe, but can be restricted further: techniques are commercially available
- It is recommended to restrict the ELVs, but not all original considered levels are recommended for technical reasons:
 - Small gas engines 140 instead of 100 mg NO_x/Nm^3 at 3% O_2
 - Diesel engines 250 instead of 140 mg NO_x/Nm^3 at 3% O_2
- Advise has been reported
- Implementation of stricter ELVs is pending at the Dutch Ministry of Infrastructure and Environment

 \rightarrow EC considers to regulate medium-sized combustion installations

 \rightarrow Implementation not opportune yet

Thank you for your attention Arjan Plomp – ECN, the Netherlands plomp@ecn.nl

Recalculation of Dutch ELVs to other units

Installation type	Substance	ELV-mg/Nm ³ at 3% O ₂	ELV-mg/Nm ³ at 15% O ₂	ELV in g/GJ
Gas engine	NO _x	100	33	28 (fuel: natural gas of 31.65 MJ/Nm ³)
Gas engine	NO _x	140	46	40 (fuel: natural gas of 31.65 MJ/Nm ³)
Gas engine	NO _x	340	113	95 (fuel: natural gas of 31.65 MJ/Nm ³)
Gas engine	$C_x H_y$ as C	1200	398	336 (fuel: natural gas of 31.65 MJ/Nm ³)
Gas engine	$C_x H_y$ as C	1500	497	420 (fuel: natural gas of 31.65 MJ/Nm ³)
Diesel engine	PM	15	5	4 (fuel: diesel of 42.7 MJ/kg)
Diesel engine	PM	50	17	14 (fuel: diesel of 42.7 MJ/kg)
Diesel engine	NO _x	140	46	40 (fuel: diesel of 42.7 MJ/kg)
Diesel engine	NO _x	250	83	72 (fuel: diesel of 42.7 MJ/kg)
Diesel engine	NO	450	149	129 (fuel: diesel of 42.7 MJ/kg)

Dutch Bems ELVs, since April 2010

Installation	NO _x	Dust	SO ₂	$C_x H_y$
Boiler (s,l) $\geq 1 MW_{(n)}$	100	5	200	
Boiler (Biomass) <5 MW _{th}	200	20	200	
Boiler (Biomass) ≥5 MW _{th}	145	5	200	
Boiler (g) $\geq 1 MW_{(n)}$	70		200	
Diesel engine (I)	450	50	200	
Gasengine (g)	100		200	1500
Gasengine (biogas or <2,5MW _{th})	340		200	
Gasturbine (I)	140	15	200	
Gasturbine (g)	140		200	

Emission limit values: s:mg/Nm³ @ 6 vol%O₂; l+g:mg/Nm³ @ 3 vol% O₂ MW_{th}: Thermal input rate in MW; MW_n: Nominal heat output in MW (source: website Infomil)

Adjustments of Dutch Bems ELVs to Activities decree, since January 2013

Installation	NO _x	Dust	SO ₂	C_xH_y
Boiler (I) ≥1 MW _(n)	120 100			
Boiler (I) (>0.4-<1 MW _{th})	120	20	200	
Boiler (Biomass) (>0.4-<1 MW _{th})	300	5	200	
Boiler (g) (>0.4-<1 MW _{th})	70		200	
Boiler (Biomass) (≤0.4 MW _{th})	300	40	200	

Emission limit values: s:mg/Nm³ @ 6 vol%O₂; l+g:mg/Nm₃ @ 3 vol% O₂

MW_{th}: Thermal input rate in MW

MW_n: Nominal heat output in MW (source: Dutch Activiteis decree, §3.2.1)

Note: until January 2015, a transitional arrangement is in place for biomassfired boilers for <1 MW_{th} due to potential EC regulation: Boiler (Biomass) (>0.4-<1 MW_{th}) \rightarrow only dust ELV: 75 Boiler (Biomass) (<0.4 MW_{th}) \rightarrow only dust ELV: 150

Environmental legislation in the Netherlands

- Natural gas engines relevant in NL:
 - \rightarrow ~4250 stationary gas engines
 - \rightarrow of which, ~3000 (< 1 MW_e/2,5 MW_{th})
 - → of which, ~1650 in Agricultural sector, ~450 in Health care sector, ~450 in Services sector

NO_x emissions in 2010: 274 kton (NEC definition; source: CBS, ECN & PBL)

- Agriculture | combustion installations greenhouse horticulture
- Agriculture other activities and other combustion installations
- Traffic total according NEC (without marine traffic)
- Industry total
- Energy total
- Consumers total
- Services total
- Waste incineration total

NO_x: environmental issue in the Netherlands

Source: PBL & ECN (2012) - National Reference Projections, Energy and Emissions (in Dutch)

NO_x: environmental issue in the Netherlands

- Annual NO_x concentration in the Netherlands in 2012
- Hotspots
- Substantially traffic induced
- Decrease of background concentration

Source: RIVM (2012) – Annual Report Air Quality (in Dutch)

Stationary engines – short background

Stationary engines – short background

 CO_2 , H_2O , NO_x , $C_xH_{y'}$ evt PM

