

Experimental Setup for Determining Ammonia-Salt Adsorption and Desorption Behavior Under Typical Heat Pump Conditions

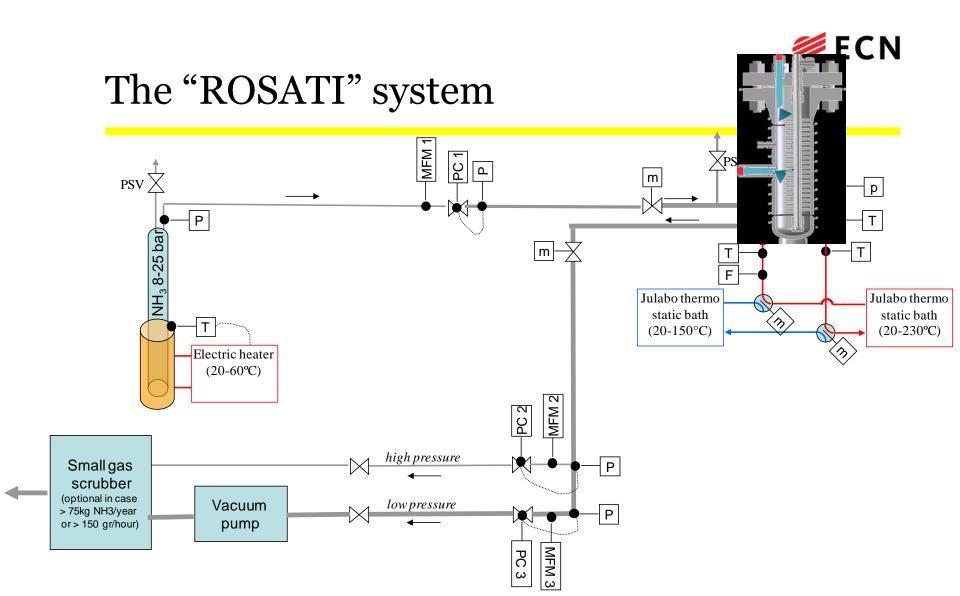
M. van der Pal

EXPERIMENTAL SETUP FOR DETERMINING AMMONIA-SALT ADSORPTION AND DESORPTION BEHAVIOR UNDER TYPICAL HEAT PUMP CONDITIONS

Michel van der Pal IMPRES, Fukuoka, Japan September 4-6, 2013

A bit of history...

- "OPTISORP" resorption type II heat pump system for upgrading waste heat was designed and constructed based on various measurement on sorbent level:
 - HP-DSC
 - PT-diagram
 - (dis)charge amounts and rate of composite
- Performance of Optisorp lower than expected
- Many explanations were suggested but no definite conclusions could be drawn



Therefore...

- Development of system for measuring performance of reactor-elements under typical heat pump conditions:
 - Temperature
 - Pressure
 - Ammonia adsorption/desorption amounts
- Also: need for visual inspection

With the objective:

 Understanding the underlying processes to help further development and improvement of adsorption heat pumps

ROSATI setup and reactor

Specs

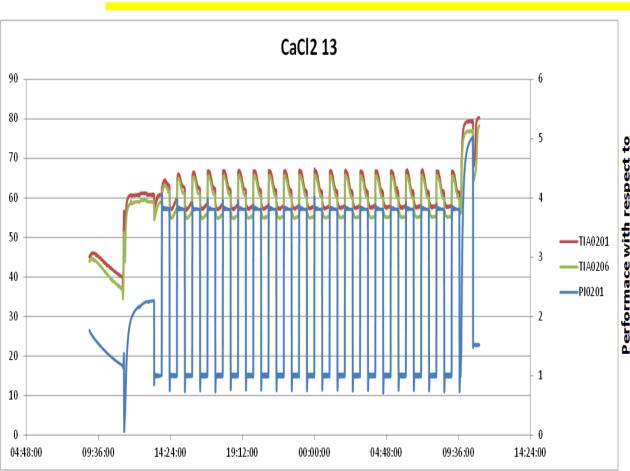
- 40 to 100 grams of sorbents
- reactor 16 50mm fin diameter,
- 16 mm tube diameter, 200mm length
- Temperature 20 − 220°C
- Pressure 0.1 20 bar
- Endoscope for visual inspection

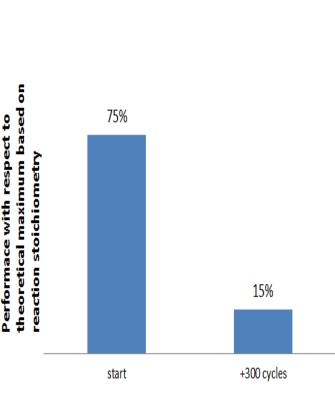
Experiments conducted

- Lithium chloride: LiCl(1-3)NH₃
- Calcium chloride: CaCl₂(2-8)NH₃
- Magnesium chloride: MgCl₂(2-6)NH₃

Lithium Chloride

- Test conditions: P = 5 bar, T (t=start)= 60°C, T(t=end) = 120°C
- Goal: to determine whether melting of LiCl-xNH₃ occurs
- Main parameter: visual inspection
- Result: see next slide
- Interpretation: LiCl·xNH₃ does melt, that causes it to escape from its matrix, likely to have poor thermal conductivity upon desorption

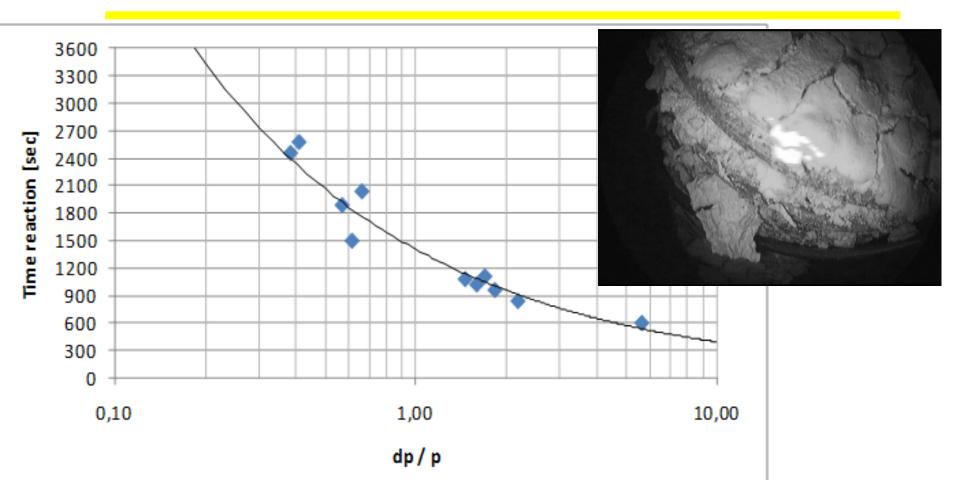



Calcium Chloride

- Test conditions: T = 60°C, P_{high} = 4 bar, P_{low} = 1 Bar, # of cycles > 300
- Goal: to determine long-term stability of calcium chloride reaction with ammonia: $CaCl_2$ ·(2 \leftrightarrow 8)NH₃
- Main parameter: amount adsorbed/desorbed as a function of cycle #
- Result: Graph (see next slide)
- Interpretation: Reactivity of CaCl₂(2-8)NH₃ deteriorates, likely caused by escape of CaCl₂ from its matrix

CaCl2 performance

CaCl₂ reactor before and after 300+ cycles



Magnesium Chloride

- Test conditions: pressure-step for various temperatures and pressures
- Goal: to determine adsorption (and desorption) rate as a function of relative pressure
- Main parameter: (time for) amount adsorbed/desorbed for various P and T conditions
- Result: Graph
- Interpretation: Good correlation between relative pressure and adsorption rate

MgCl₂: relative pressure vs reaction time (90% of sorbent reacted)

Conclusions

- ROSATI- apparatus allows measurements of mass flow and visual inspection under well-controlled conditions (P,T)
- Measurements of mass-flow, temperature, pressure and visual inspection all provide very useful information for interpretation
- ROSATI is a useful tool for investigating behavior of ammonia-salt reactions at reactor-level

Further developments:

- Adjusting reactor to allow for other reactor geometries
- Measuring other sorbents and reactor types

