

Improved Gasifier Availability With Bed Material and Additives

A.J. Grootjes C.M. van der Meijden H.J.M. Visser A. van der Drift

June 2013 ECN-L--13-040

IMPROVED GASIFIER AVAILABILITY WITH BED MATERIAL AND ADDITIVES

A.J. Grootjes, C.M. van der Meijden, H.J.M. Visser & A. van der Drift

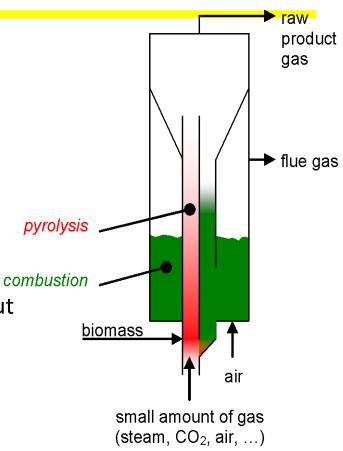
Copenhagen 3th of June 2013

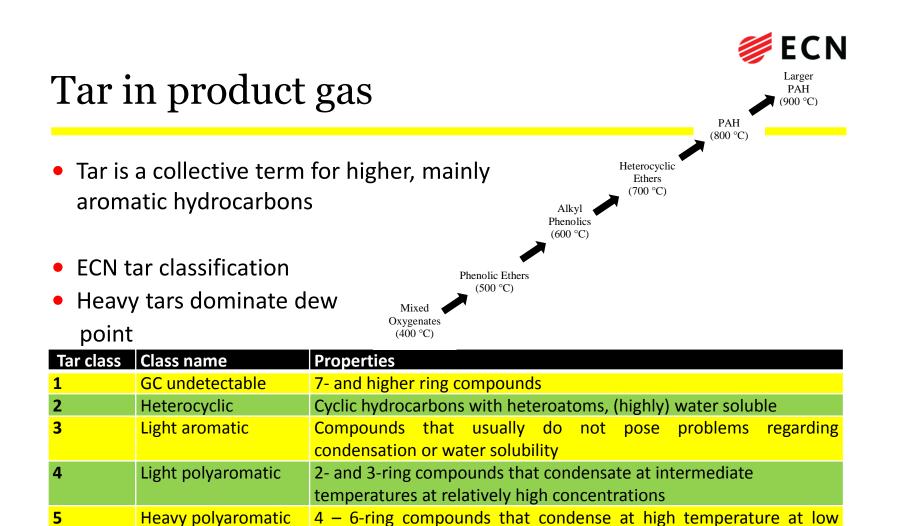
www.ecn.nl

Outline

- Introduction
 - ECN
 - MILENA gasifier
 - Tars
 - Research goal
- Experiments & results
 - Tar reduction
 - SEM analysis
- Conclusions

The Energy research Centre of the Netherlands (ECN)

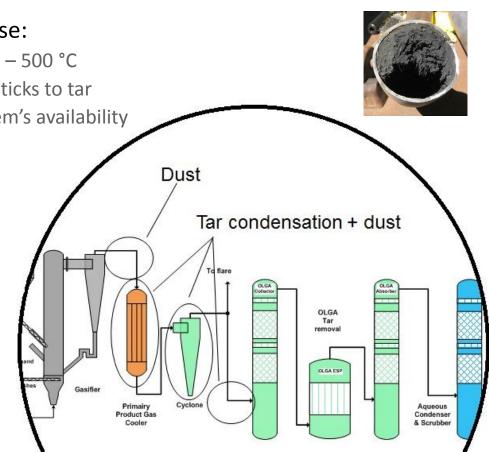

- Largest Dutch R&D centre for renewable energy.
- Partly financed by Netherlands and EU government grants, and partly by contract R&D.
- Main products: technology licenses and contract R&D
- 600 staff



MILENA gasifier

- Dual Fluidized Bed (DFB) gasification
- High efficiency, low steam use, no ASU
- 12 15 MJ/Nm³(dry basis), low N₂
- Heat transfer through bed material circulation
- 30 kWth lab scale & 800kWth pilot scale
- 12 MWth demonstrator, 2015 in operation
- Scalable (> 100 MW)
- Bed material circulation: ± 40 x biomass input
- Bed material average residence time:
 - Riser: ± 5 seconds ('reducing' conditions)
 - Combustor: ± 12 minutes (oxidizing conditions)
- More tar than DFBs with BFB gasification
- Less time in the riser for primary measures

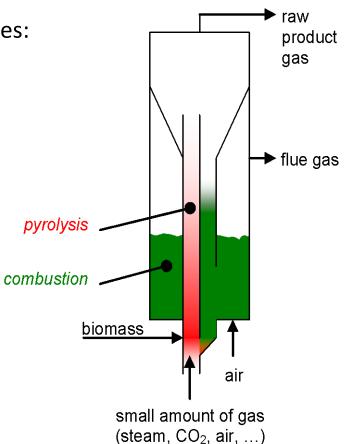
concentrations, like coronene (MW = 300 g/mol)



Tar problem

• Heavy tar is problematic because:

- Condensation of heavy tars at 400 500 °C
- Dust can add to the tar problem: sticks to tar
- Clogging and fouling reduces system's availability



Primary measures

Reduce tars by primary & secondary measures:

- Primary = treatment inside the gasifier
- Secondary = gas cleaning after the gasifier (OLGA)
- More tar than DFBs with BFB gasification
 Less time for primary measures
- Goal of research (2011 2013)
 - Improve availability of gasifier by:
 - Lowering and controlling tar in product gas
 - Focussing on primary measures, including:
 - Active bed material
 - Additives

Experiments

- Lab scale MILENA experiments (2011 2013)
- Beech wood, standard fuel & Fuel B, mineral rich fuel
- Gas analysis by online gas monitors & μ-GC
- Solid-Phase Adsorption (SPA) tar sampling

	T gasification	T combustion	Fuel	Steam to C
	[°C]	[°C]	[kg/h]	[kg/kg]
Sand	810	849	4.5	0.65
Norwegian olivine (N olivine)	853	890	5.0	0.60
Austrian olivine (fresh) (A olivine)	876	912	4.5	0.68
Sand + Fuel B	855	898	4.6	0.68
N olivine + Fuel B	853	914	5.0	0.58
A olivine + Fuel B	846	921	4.5	0.65
A olivine (activated after 200 h)	870	924	4.5	0.65
A olivine + Additive A	867	902	4.5	0.65
A olivine +Additive A+ B	855	868	4.5	0.65

• Main gas components

- Sand is inert, no increased Water-Gas Shift (WGS) activity
- Olivines enhance WGS

	СО	H ₂	CO ₂	CH₄
	[Vol % _{db}]			
Sand	45	18	15	14
Norwegian olivine (N olivine)	29	26	25	13
Austrian olivine (fresh) (A olivine)	35	21	24	12
Sand + Fuel B	31	24	21	14
N olivine + Fuel B	25	30	24	10
A olivine + Fuel B	21	29	32	10
A olivine (activated after 200 h)	22	28	33	11
A olivine + Additive A	28	27	27	11
A olivine +Additive A+ B	23	27	30	12

• Tar content of product gas:

	Class 2	Class 3	Class 4	Class 5	Unknowns	Total
	[g/Nm ³]					
Sand	1.3	0.7	27.5	6.6	12.9	49.1
Norwegian olivine (N olivine)	2.2	0.6	15.7	3.2	5.2	26.9
Austrian olivine (fresh) (A olivine)	0.7	0.5	23.1	5.6	8.9	38.8
Sand + Fuel B	1.2	0.9	27.6	6.5	13.7	49.9
N olivine + Fuel B	0.4	0.9	23.6	5.7	8.6	39.2
A olivine + Fuel B	0.1	0.4	8.0	0.6	1.9	11.0
A olivine (activated after 200 h)	0.1	0.4	7.9	0.8	1.5	10.5
A olivine + Additive A	0.4	0.4	14.8	2.8	4.8	23.1
A olivine +Additive A+ B	0.2	0.5	13.9	2.1	3.1	19.7

- Being inert or with moderate WGS: high tar
- High tar dew point, estimated 400 500 °C

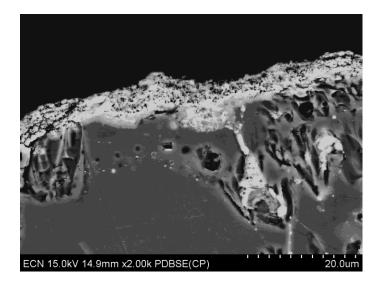
• Tar content of product gas:

	Class 2	Class 3	Class 4	Class 5	Unknowns	Total
	[g/Nm ³]					
Sand	1.3	0.7	27.5	6.6	12.9	49.1
Norwegian olivine (N olivine)	2.2	0.6	15.7	3.2	5.2	26.9
Austrian olivine (fresh) (A olivine)	0.7	0.5	23.1	5.6	8.9	38.8
Sand + Fuel B	1.2	0.9	27.6	6.5	13.7	49.9
N olivine + Fuel B	0.4	0.9	23.6	5.7	8.6	39.2
A olivine + Fuel B	0.1	0.4	8.0	0.6	1.9	11.0
A olivine (activated after 200 h)	0.1	0.4	7.9	0.8	1.5	10.5
A olivine + Additive A	0.4	0.4	14.8	2.8	4.8	23.1
A olivine +Additive A+ B	0.2	0.5	13.9	2.1	3.1	19.7

Fuel B after 24 hour and standard fuel after 200 hour: active bed material!

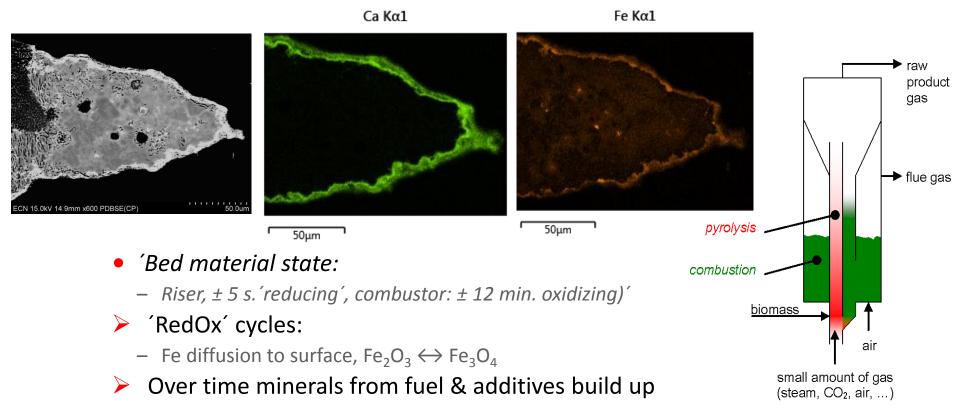
- Up to 85% reduction of heavy tars (class 5)
- Dew point around ≤ 200 °C, conventional gas coolers, no HT steel
- Not all olivines can be activated

• Tar content of product gas:


	Class 2	Class 3	Class 4	Class 5	Unknowns	Total
	[g/Nm ³]					
Sand	1.3	0.7	27.5	6.6	12.9	49.1
Norwegian olivine (N olivine)	2.2	0.6	15.7	3.2	5.2	26.9
Austrian olivine (fresh) (A olivine)	0.7	0.5	23.1	5.6	8.9	38.8
Sand + Fuel B	1.2	0.9	27.6	6.5	13.7	49.9
N olivine + Fuel B	0.4	0.9	23.6	5.7	8.6	39.2
A olivine + Fuel B	0.1	0.4	8.0	0.6	1.9	11.0
A olivine (activated after 200 h)	0.1	0.4	7.9	0.8	1.5	10.5
A olivine + Additive A	0.4	0.4	14.8	2.8	4.8	23.1
A olivine +Additive A+ B	0.2	0.5	13.9	2.1	3.1	19.7

- Additives A & B have moderate effect
- About 50% less tar

Activated bed material & additives: usefull parameters for tar control


• SEM analysis of Austrian olivine:

- Layer formation around olivineCalcium & iron rich
 - Catalysts known for WGS & tar reforming

• SEM EDS mapping of active Austrian olivine:

Conclusions

- Despite characteristics of residence time & because of 'RedOx' cycles of MILENA, primary measures for tar control & reduction are possible
- Availability of the system will be improved
- Not all bed materials become active towards WGS and tar reforming
- More bed materials and analysis will follow
- Pilot scale tests will verify scale-up effects

Thank you for your attention!

Questions?

• For more information come visit us at our stand

ECN Westerduinweg 3

Westerduinweg 3P.O. Box 11755 LE Petten1755 ZG PettenThe NetherlandsThe Netherland

T +31 88 515 49 49 F +31 88 515 44 80 The Netherlands

www.ecn.nl

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl