

Ethanol-based Organosolv Pretreatment of Wheat Straw

Process Optimization and Lignin Characterization

W.J.J. Huijgen, J.W. van Hal, G. Telysheva* & R.J.A. Gosselink**

*) Latvian state Institute of Wood Chemistry

**) Wageningen UR Food & Biobased Research

Copenhagen, Denmark 5th June 2013

www.ecn.nl

2

Contents

- ECN
- Organosolv
- Process optimization wheat straw
- Lignin characterization
- Ongoing and future work

Energy research Centre of the Netherlands (ECN)

• Mission:

 With and for the market, we develop knowledge and technology that enable a transition to a sustainable energy system.

• Business units:

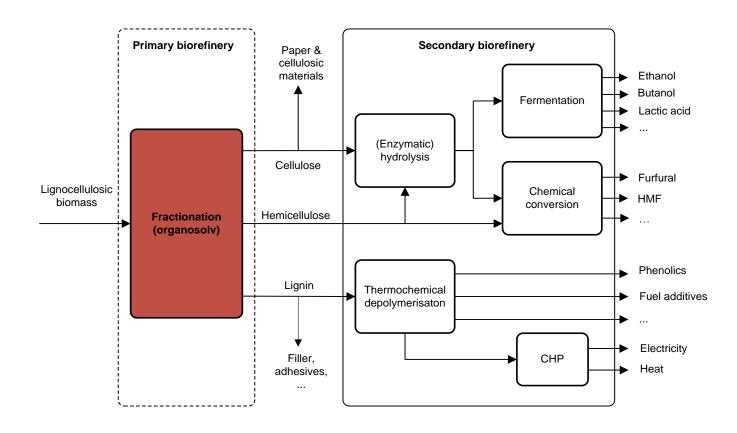
- Biomass & energy efficiency
- Solar energy
- Wind energy
- Policy studies
- Environment & energy engineering

ECN

- Independent research institute
- ~600 employees
- Locations:
 - Petten (HQ)
 - Amsterdam
 - Eindhoven
 - Brussels
 - Beijing

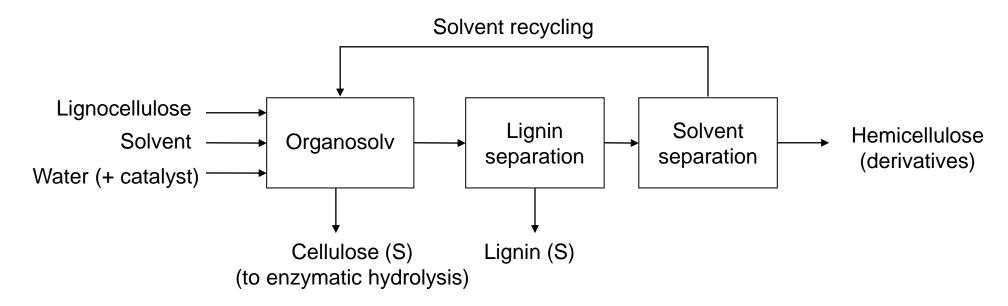
Organosolv

5


Lignocellulose Pretreatment

- Several physical-chemical pretreatment routes to promote enzymatic cellulose hydrolysis under development.
- Main pretreatment routes (pilot-scale):
 - (Dilute) acid pre-treatment.
 - Steam explosion.
- Routes effective for cellulose, however:
 - Lignin ends up in residue (with unconverted sugars, process chemicals, ash, ...).
 - Residue generally only suitable for CHP.
- Alternative:
 - Separation of lignin prior to enzymatic hydrolysis.
 - Preserving native chemical functionalities of lignin.

Organosolv


Lignocellulose Biorefinery

EU BC&E 2013 6

Organosolv Process

- Solvents: aqueous ethanol, acetone, ...
- Catalyst: H₂SO₄, ...
- Typical process conditions: 160-200 °C, 30-120 min.

General information: Reith et al. (2011) A step towards the development of a Biorefinery, NPT procestechnologie, 18(1), 26-28

EU BC&E 2013

Process Optimization Wheat Straw

Process Optimization Study

EU-FP7 project BIOCORE:

- Four feedstocks selected: wheat straw, birch, poplar and rice straw.
- Focus of optimisation study: wheat straw.

Wheat straw:

- Origin: northern France.
- Milled to <10mm and stored ambient-dry.
- Composition: 10.2% extractives, 35.4% glucan, 19.8% xylan, 2.1% arabinan, 1.4% galactan,
 17.6% lignin and 3.5% ash.

• Reference:

 Wildschut et al. (2013) EtOH-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose, Bioresour. Technol., 135, 58-66.

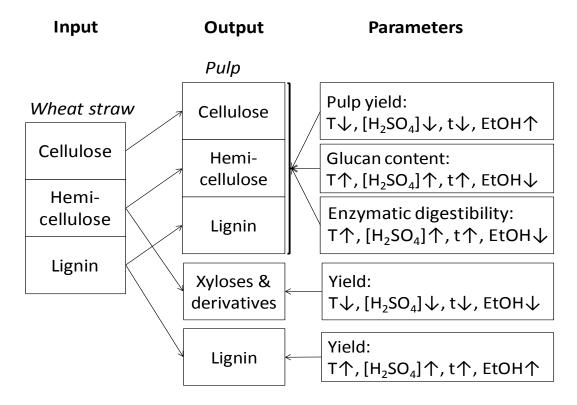
Experimental

Organosolv:

- Batch autoclave reactor (0.5L).
- Parameter screening:
 - Temperature (160-210 °C).
 - Ethanol concentration (50-80 % w/w aqueous ethanol).
 - Reaction time (60-120 min).
 - Catalyst dose (0-30 mM H₂SO₄).
- Optimisation study:
 - 16 experiments with high/low for other parameters.

Enzymatic hydrolysis:

- NREL protocol.
- Accellerase 1500 (DuPont Industrial Biosciences).
- 20 FPU/g dw substrate, 3% w/v consistency, pH 4.8, 50 °C, 72h.



Optimization

 Based on process-product relations, optimization towards enzymatic digestibility.

	Autocatalytic	Catalytic
Process conditions	210 °C 90 min 50% w/w EtOH	$190 ^{\circ}\mathrm{C}$ $60 \mathrm{min}$ $60\% \mathrm{w/w} \mathrm{EtOH}$ $30 \mathrm{mM} \mathrm{H_2SO_4}$
Enz. digestibility (%)	86	89
Delignification (%)	59	76
Lignin yield (%)	84	86
Xylan hydrolysis (%)	81	95

Lignin Characterization

Lignin Characterization Study

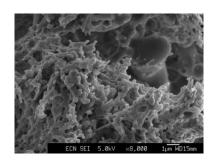
- Goal: influence organosolv process conditions → properties of lignins.
- 11 samples selected from parametric study on wheat straw:
 - Influence process parameters: T, t, [H₂SO₄] & EtOH:H₂O.
 - Optimum conditions: enzymatic hydrolysis & lignin yield.
 - Alcell lignin used as reference.

Analyses performed:

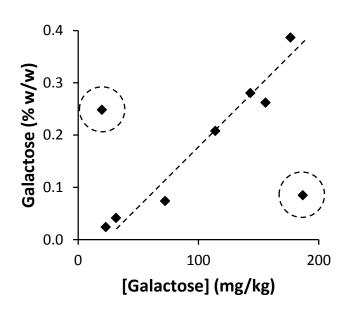
- Composition (NREL protocol LC biomass → purity, carbohydrates impurities).
- Ash content (TGA).
- Molecular Weight Distribution (alkaline SEC).
- Functional groups (both titrations and 31P-NMR).
- Tg (DSC).

EU BC&E 2013 13

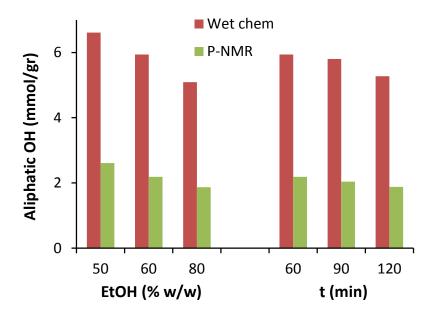
Properties Organosolv Lignins


- Light brown to black (compacted) powder.
- High purity (>>90 wt%).
 - Main contaminant oligomeric xylose (hemicellulose).
 - Lignin sulphur (≤0.1 wt%) and ash free.

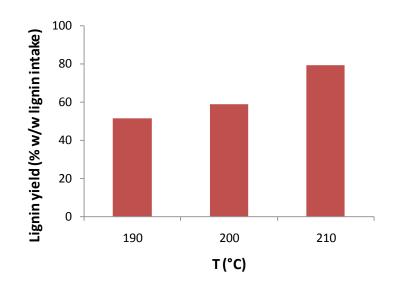
- Low average (2000-3500 g/mol).
- Narrow MW distribution.



Carbohydrate Impurities


- Lignin powders:
 - Production by precipitation upon water dilution, centrifugation, decantation and drying.
 - Lignins used have not been washed.
- Correlation between 'total sugars in organosolv liquor' and 'carbohydrate impurities in lignin':
 - Carbohydrate impurities originate from adhering diluted organosolv liquor.
 - Not from LignoCarbohydrate Complexes (LCC).
- Deviation of the same two lignins from the correlation for each sugar:
 - Different process conditions (80% EtOH, 30 mM H₂SO₄).

Analytical Challenges


- Large differences between functional groups determined by ³¹P-NMR and wet chemistry methods.
 - Absolute values differ substantially, mostly trends are the same.
 - Reasons for discrepancies unclear.
- Difficulties in determining Tg in some samples.

Organosolv Process Temperature

- Increase delignification & lignin yield.
- Reduction of carbohydrate impurities.
- Reduction of functional groups:
 - More lignin condensation.
 - More pseudo-lignin formation (incl ligninfurfural condensation).

Lignin characteristics

T (°C)	AIL + ASL (% w/w)	Carbohydrates (% w/w)	OH phen+OH COOH (mmol/gr)
190	90.9	3.6	2.1
200	95.5	1.6	1.7
210	96.6	1.0	1.6

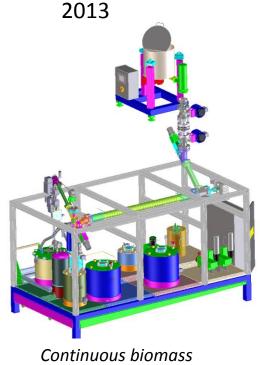
EU BC&E 2013 17

Ongoing and Future Work

- Lignin application tests with industrial partners.
- Construction bench-scale continuous organosolv reactor.
- Partnering for further technology development & commercialisation.

2007

0.1 L



2010

20 L

pretreatment reactor

Thank you for your attention

More information:

huijgen@ecn.nl

This work was carried out within the EU FP7 project BIOCORE that is supported by the European Commission through the Seventh Framework Programme for Research and Technical development under contract no FP7-241566.

ECN

Westerduinweg 3 P.O. Box 1
1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 224 56 49 49 info@ecn.nl F +31 224 56 44 80 **www.ecn.nl**

