

Technology Roadmapping and the Technology Mechanism

'Technology roadmaps related to climate change'

Marc Londo, ECN

Bonn

March 25, 2013

Contents

- Highlights of the background paper for the TEC
- Some thoughts on TRMs and adaptation

What are Technology Roadmaps?

A Technology Roadmap (TRM) serves as a coherent basis for specific technology development and transfer activities, providing

- a common (preferably quantifiable) objective,
- time-specific milestones
- and a consistent set of concrete actions;
- ... and is developed jointly with relevant stakeholders,
- who commit to their roles in the TRM implementation.

What are technology roadmaps?

- Strategic planning tool in development and diffusion of technologies
 - At corporate level (its origin)
 - At sector level
 - For (supra)national innovation policy
- Not strictly defined: open, flexible
 - In scope
 - In process
 - In result
- Common objectives:
 - Provide strategic focus,
 - Mobilise relevant actors/stakeholders
 - Create coherence in their actions

Evaluating Technology Roadmaps

- What is a quality roadmap?
 - Process
 - Document
 - Visual Representation

- Evaluation criteria:
 - Credibility
 - Desirability
 - Utility
 - Adaptability

Possible relation with TEC and Technology Transfer

- Safeguard 'demand-driven' nature of TT
- Improve coherence in TT activities
- Improve stakeholder support and engagement (private and public parties)
- Follow-up to TNAs?

TRM review for TEC

 Inventory and selection of TRMs on climate change mitigation and adaptation technologies: 159 documents

Analysis:

- Technology
- Geographical source
- Geographical coverage
- Year of publication
- Time horizon
- Authoring organisation
- Substantive elements
 - Process description
 - Quantifiable targets
 - Visual representation

Matrix 1 Summary	Geographical Source				
	International	Annex I	Non Annex I	Total	
A1. Renewable Energy	12	39	4	55	
A2. Other Energy	6	53	5	64	
B. Transportation	6	29		35	
C. Buildings	3	13		16	
D. Industry	2	12		14	
E. Agriculture		2	1	3	
F. Waste Management		1		1	
G. Adaptation	1	5	5	11	
H. Geoengineering		1		1	
Total	70	339	27	436	

Specs. of engaged stakeholders

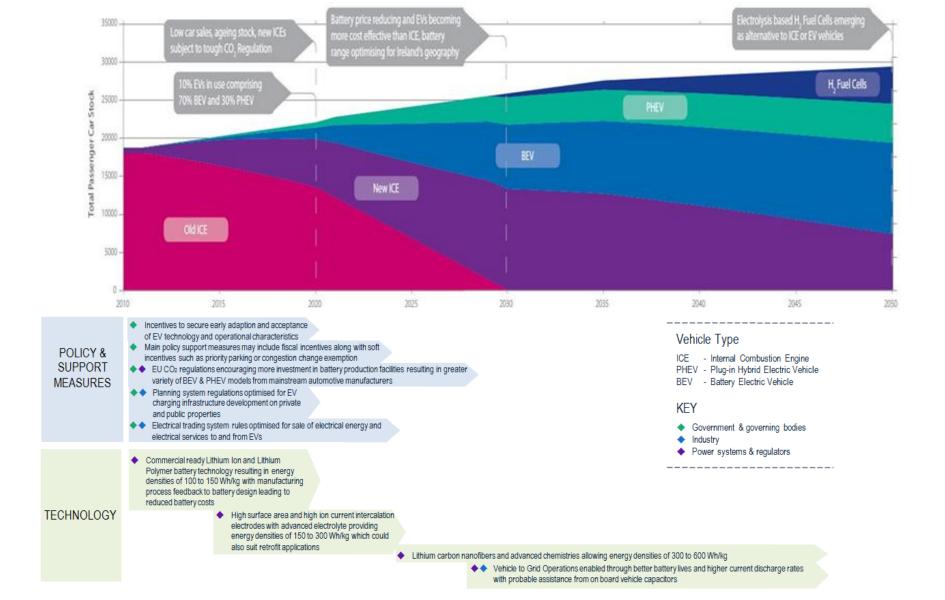
Actions assigned

Plan for update

Key findings

- Mitigation technologies dominate over adaptation
- Geographical source: Annex-1 countries and IGOs
- TRMs on renewables energy technologies more recent than others
- IGO and Industry main authors
- Very few "quality" TRMs (based on six substantive elements)
- Need for guidance in order to improve the quality of TRMs.

Technology	Substantive Elements						
	Process	Stakeholders	Targets	Actions	Visual	Update	
All TRMs	32%	36%	60%	54%	40%	9%	
A1. Renewable Energy	23%	14%	61%	55%	43%	9%	
A2. Other Energy	31%	40%	55%	46%	45%	6%	
B. Transportation	37%	49%	66%	51%	31%	9%	
C. Buildings	44%	56%	44%	38%	56%	0%	
D. Industry	64%	64%	71%	64%	57%	7%	
E. Agriculture	100%	67%	0%	33%	33%	0%	
F. Waste Managemen	100%	100%	0%	0%	0%	0%	
G. Adaptation	36%	55%	82%	55%	9%	27%	
H. Geoengineering	100%	100%	0%	0%	0%	0%	



Good practice examples

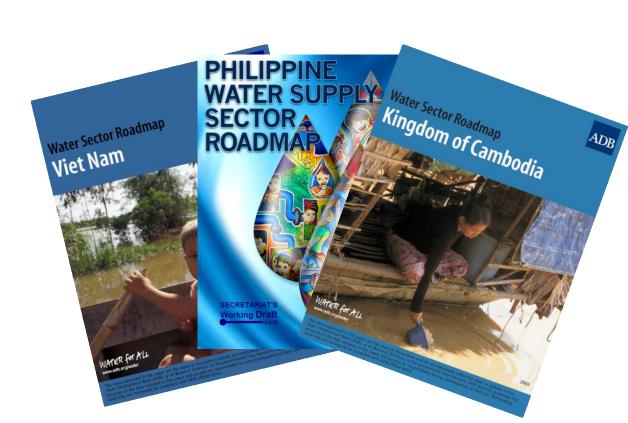
- IEA:
 - Comprehensive set of consistent TRMs,
 - Guidance document

Various good elements in several TRMs identified

Further conclusions

Advantages of using TRMs

- Particularly suitable for technology management and related policy
- The strong consensus-building element useful for CTC&N?
- Flexibility, adaptability: strength for Technology Mechanism with diversity of country contexts and technologies


Limitations of using TRMs

- Risk of 'lock-in' or tunnel vision through consensus building.
- Alignment with existing (governmental) plans and strategies.
 - Create culture of openness
 - Follow-up: iteration, refinement, monitoring, updating outcomes
 - Integration with broader policy strategy

- Only 11 out of 159
 - Water resources (8)
 - Coastal zones (1)
 - Public health (1)
 - Generic (1)
- OECD: 5
 - Various techs.
 - Relatively elaborate
- Non-OECD: 5
 - All on water
 - Relatively concise

Why so few adaptation TRMs?

Not analysed thoroughly, but speculating:

- Generally more attention for mitigation
- Less prominent role of technology (development)
- Underrepresentation in our selection? Hidden adaptation TRMs?
 - Not explicitly climate change
 - Not explicitly adaptation
 - Not explicitly TRM

However, adaptation TRMs could be very useful

- Tech transfer in broad sense
- Importance of knowing context and capabilities in receiving country
- Stakeholder engagement on both sides

So: A case for the TEC!

Thank you for your attention

Marc Londo (ECN) londo@ecn.nl

Elliott More (IfM) egm27@cam.ac.uk

Rob Phaal (IfM)

Laura Würtenberger (ECN)

ECN

Westerduinweg 3

P.O. Box 1 1755 ZG Petten

1755 LE Petten
The Netherlands

The Netherlands

T +31 88 515 49 49

info@ecn.nl

F +31 88 515 44 80

www.ecn.nl

University of CambridgeInstitute for Manufacturing

17 Charles Babbage Road Cambridge CB3 OFS UK

T +44 (0)1223 765824 www.ifm.eng.com.ac.uk