

Opportunities for early Carbon Capture, Utilisation and Storage development in China

Opportunities for early Carbon Capture, Utilisation and Storage development in China

14 - 01 - 2013

London

Daan Jansen

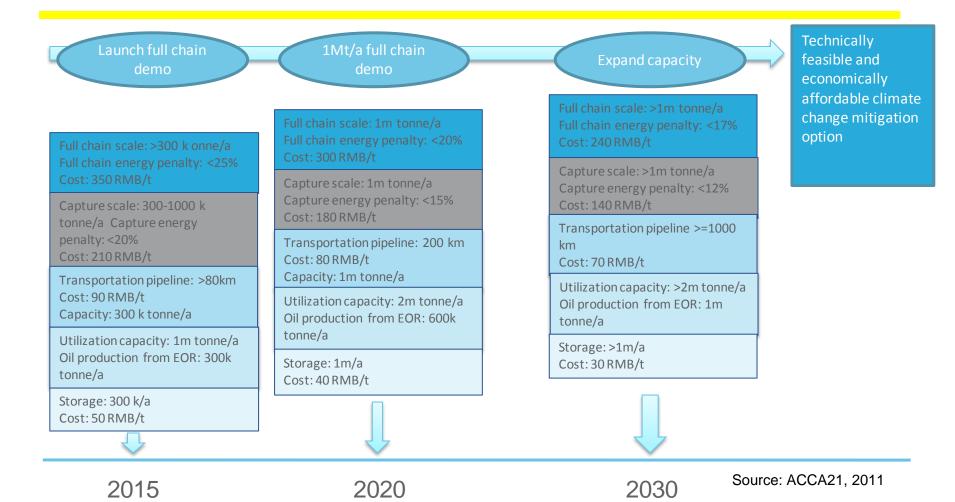
ECN

The Netherlands

www.ecn.nl

Presentation outline

- China CCUS policy, strategy and development status
- International developments in CCUS
- High-purity CO₂ sources and potential EOR locations in China
- Capture routes,
 - Separation technologies/processes
 - CO₂ purity specifications, compression and after treatment
 - CO₂ transportation options
 - Associated Cost
- Potential cost-effective full-chain CCUS projects in Shaanxi
- Barriers to CCUS development in Shaanxi
- Conclusions



China CCUS strategy and policies

- In the near term only R&D programs to support research centers and enterprises on CCS research exist.
- National Medium- and Long-Term Program for Science and Technology Development (2006-2020), State Council, 2006
 - To develop efficient, clean and near-zero emission fossil energy utilization technologies - highlighted as an important frontier technology
- China's National Climate Change Programme (2007-2010), State Council, 3rd
 June, 2007
 - CCUS technology was included as one of the key GHG mitigation technologies that should be developed
- China's Scientific and Technological Actions on Climate Change
 - CCUS technology was identified as one of the key tasks in the development of GHG control technologies in China
- China CCUS Roadmap (2011) prepared but not formally adopted
 - Prioritizes industrial high-purity CO₂ sources and EOR for first full scale demonstration project

Proposed China CCUS roadmap

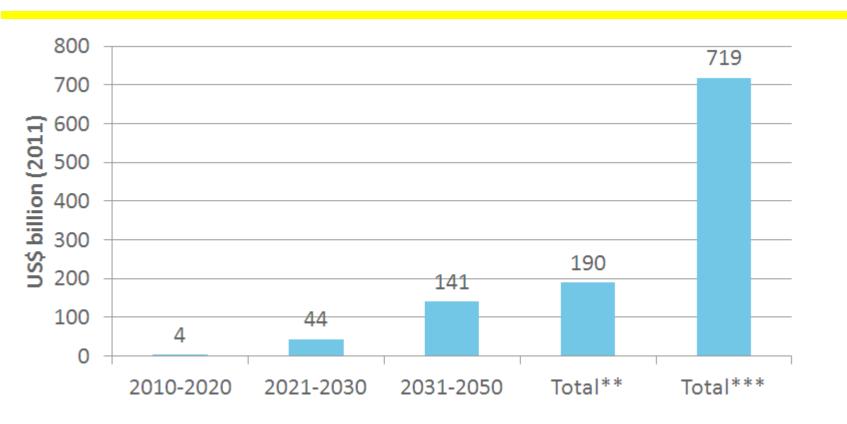
Status and plans for CCUS demos in China

- 19 CCUS pilot/demonstration projects:
 - 13 projects in operation
 - 6 projects planned
 - 2 projects phase II expansions
- CO₂ utilization:
 - 7 projects EOR (40-1000 ktCO₂/a)
 - 3 projects food/industrial use (3-120 ktCO₂/a)
- Capture technology used in existing pilot/demo projects:
 - Pre-combustion
 - Post combustion
 - Oxy-fuel
- No high-purity CO₂ source industries are currently included in existing or planned CCUS demonstration projects in China

High-purity CO₂ sources and EOR potential in China

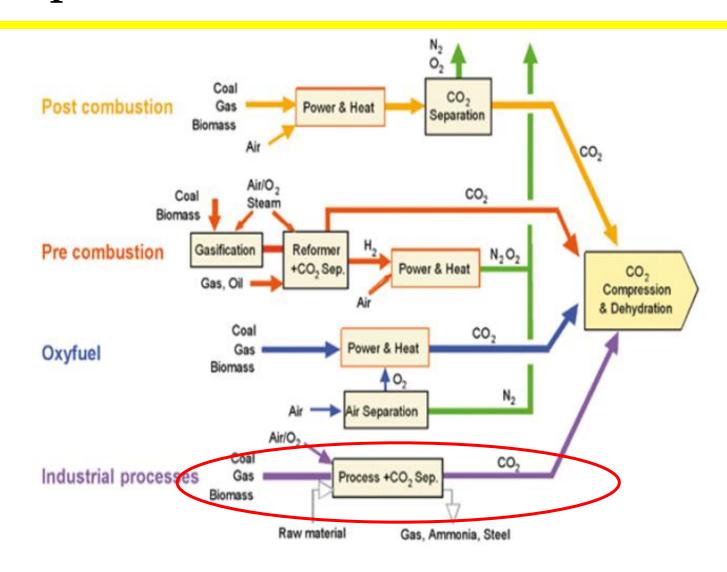
- A recent study by PNNL estimated that there are 994 large (0.1+ MtCO₂/yr) non-power industrial plants, emitting a combined 1081 MtCO₂/yr.
 - About one-half of his is from cement production with the remainder made up of iron and steel, petroleum refineries, ammonia, ethylene, ethylene oxide, and hydrogen.
- The same study by PNNL reviewed sixteen major onshore and 3 offshore depleted oil basins for their EOR potential and estimated their total CO₂ storage capacity at 4800 MtCO₂—of which 4600 MtCO₂ is found onshore. This would ultimately allow additional recovery of up to about 7 billion barrels of oil.

Large power and non-power **ECN** industrial point CO₂ sources in China



International CCUS developments

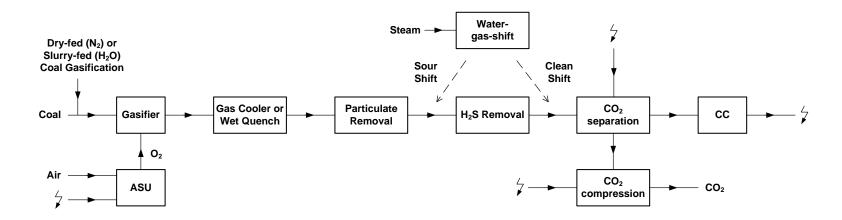
- The IEA/UNIDO have calculated that capture from high-purity industrial sources should account for 750 MtCO₂/yr globally by 2050.
- China is estimated to provide up to 120MtCO₂/yr.
- A total global investment of US\$120 billion is expected to be needed for high-purity CCS, including transport and storage
- Financing options for CCS under the UNFCCC process are currently limited.
 CCS allowed in the CDM, but limited demand of carbon credits
- Business cases involving EOR, combined with bi/multilateral donor provisions are currently the primary channels for investment in CCUS


Investments needed for CCS in industry* in China 2010 – 2050

Capture routes

Why use first high purity CO₂ sources?

- Capture of CO₂ from dilute gas streams is the most expensive component of the CCS chain:
 - Combustion plants (4-14% CO₂) must be concentrated to make transport & storage economic
 - Low pressure & partial pressure must use chemical solvents
 - High-levels of impurities (SO₂, particulates) contaminate solvents
 - High energy demand for flue gas treatments (increases costs)
- High purity sources avoid many of these issues
 - CO₂ from the industrial process is required to purify the product, or because the
 CO₂ has an adverse effect on downstream steps in the industrial process
 - Since this CO₂ removal step is necessary in the industrial process, its costs are not attributed to CCUS.


Gas input streams composition resulting in high purity CO₂ sources

Source	CO ₂ concentration % vol	Pressure of gas stream MPa ^a	CO ₂ partial pressure MPa
Chemical reaction(s)			
Ammonia production ^b	18	2.8	0.5
Ethylene oxide	8	2.5	0.2
 Hydrogen production^b 	15 - 20	2.2 - 2.7	0.3 - 0.5
Methanol production ^b	10	2.7	0.27
Other processes			
Natural gas processing	2 - 65	0.9 - 8	0.05 - 4.4

^{* 0.1} MPa = 1 bar

The concentration corresponds to high operating pressure for the steam methane reformer.

High purity CO₂ sources: examples

Industry	Technology producing high-purity CO ₂
Power production	-
Gas and oil industry	Natural gas processing
	LNG production
	Coal-to-liquids
	Gas-to-liquids
Chemical industry	Hydrogen production
	Methanol production
	Ammonia/Urea production
	(Poly)Ethylene production
Biomass conversion	Biomass to Liquids
	Bioethanol production
Cement industry	-
Iron and steel industry	-
Refineries	- Hydrogen

CO₂ emission for coal based plants:

- 2 -3 ton CO₂ per ton NH₃
- 2,5 -3,5 ton CO₂ per ton of MeOH
- 3,8 -5,5 ton CO₂ per ton DME
- 2 -3 ton CO₂ Mm³ CH₄

Separation technologies/processes

		<u> </u>			_				IIFP	
		BASK	DON	EXXO	Fluor	Linde	Lurei	shell	Undellip	JOR
Monoethanolamine	MEA		0	0			0			
Diethanolamine	DEA						0			
Diisopropanolamine	ADIP							0		
Methyldiethanolamine	MDEA	0	0					0		
Potassium carbonate	Hotpot		0	0			0			
Methanol+MDEA/DEA	Amisol						0			
XXX+MDEA	Flexsorb			0						
Sulfolane+MDEA/DIPA	Sulfinol							0		
DME of PE glycol	Selexol									0
Methanol	Rectisol					0	0			
N-Methylpyrrolidone	Purisol						0			
PE glycol + dialkyl ether	Sepasolv	0								
Propylene carbonate	Fluor solvent				0					
Tetrahydrothiophenedioxide	Sulfolane							0		
Tributyl phosphate	Estasolvan								0	

Separation technologies/processes

									, KR	
		BASK	DON	EXX	Fluor	Linde	Lirei	shell	Undellep	JOR
Monoethanolamine	MEA		0	0			0			
Diethanolamine	DEA						0			
Diisopropanolamine	ADIP							0		
Methyldiethanolamine	MDEA	0	0					0		
Potassium carbonate	Hotpot		0	0			0			
Methanol+MDEA/DEA	Amisol						0			
XXX+MDEA	Flexsorb			0						
Sulfolane+MDEA/DIPA	Sulfinol							0		
DME of PE glycol	Selexol									0
Methanol	Rectisol					0	0			
N-Methylpyrrolidone	Purisol						0			
PE glycol + dialkyl ether	Sepasolv	0								
Propylene carbonate	Fluor solvent				0					
Tetrahydrothiophenedioxide	Sulfolane							0		
Tributyl phosphate	Estasolvan								0	

CO₂ purity specifications

- The specifications for CO₂ purity may be set by considerations on compression, transport and underground storage.
- How pure the CO₂ needs to be, depends on the impurity considered and CO₂ application.

Component	Limited by
Nitrogen	Compression costs
Hydrocarbons	compression costs, energy loss
Water	Corrosion
Oxygen	Corrosion, storage reservoir issues (EOR)
H ₂ S	Health and Safety
со	Health and safety
Glycol	Operations
Temperature	Material integrity

CO₂ purity specifications

- Currently there are no national or internationally agreed standards for CO₂ purity.
- Specifications have been developed by EU research projects and European Benchmarking Task Force (EBTF), Franco, 2011)

	Recommended by EBTF	Aquifer	EOR
CO ₂	> 90 vol	% > 90 vol	% > 90 vol %
H ₂ O	< 500 ppm (v)	< 500 ppm (v)	< 50 ppm (v)
H ₂ S	< 200 ppm (v)	<1.5 vol %	< 50 ppm (v)
NO _x	< 100 ppm (v)	NA	NA
SO _x	< 100 ppm (v)	NA	<50 ppm (v)
HCN	< 5 ppm (v)	NA	NA
cos	< 50 ppm (v)	NA	< 50 ppm (v)
RSH	< 50 ppm (v)	NA	> 90 vol %
N ₂ , Ar, H ₂ *	< 4 vol % *	< 4 vol % *	< 4 vol % *
CH4	< 2 vol %	< 4 vol % *	< 2 vol %
CO *	< 0.2 vol %	< 4 vol % *	< 4 vol % *
02	<100 ppm vol	< 4 vol % *	<100 ppm vol

NA = Not available

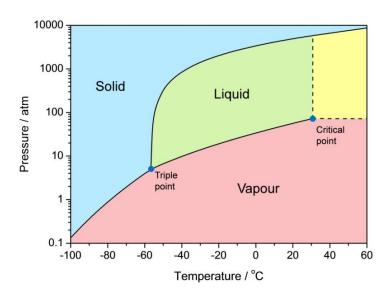
Note: * - $x + \Sigma xi < 4$ vol % = total content of all non-condensable gases

Impurities in delivered CO₂ (dry)

Chemical solvents:

 Because of the highly selective chemical reaction, the resulting CO₂ stream is very pure.

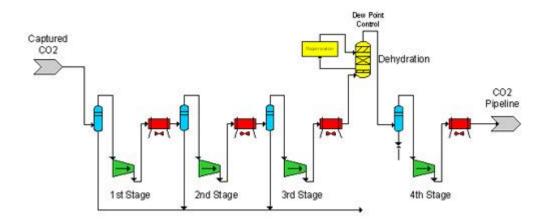
Physical Solvents


 CO₂ from physical solvents typically contains about 1- 2% H₂ and CO and traces of sulfur.

	SO ₂	NO	H ₂ S	H_2	CO	CH ₄	N ₂ /Ar/O ₂	Total
COAL FIRED PLANTS								
Post-combustion capture	<0.01	< 0.01	0	0	0	0	0.01	0.01
Pre-combustion capture (IGCC)	0	0	0.01-0.6	0.8-2.0	0.03-0.4	0.01	0.03-0.6	2.1-2.7
Oxy-fuel	0.5	0.01	0	0	U	0	3.7	4.2
GAS FIRED PLANTS								
Post-combustion capture	< 0.01	< 0.01	0	0	0	0	0.01	0.01
Pre-combustion capture	0	0	<0.01	1.0	0.04	2.0	1.3	4.4
Oxy-fuel	< 0.01	< 0.01	0	0	0	0	4.1	4.1

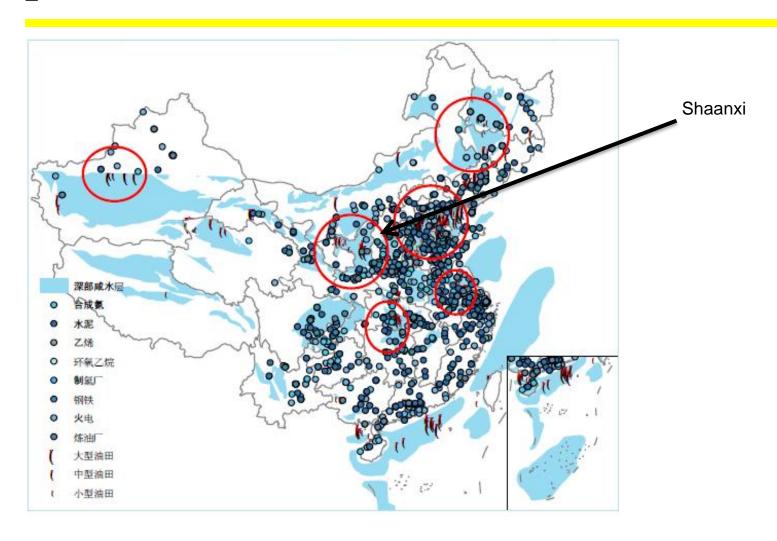
Compression and after treatment

	Temperature (°C)	Pressure (bars)	Comment
Pipeline	10 (NL)	80-200	Pressure drop in pipeline is compensated by high entrance pressure
Ship	-54 to -50	6 to 7	Liquid > 6 bar , <-55
Train	-10 to -20	25	Own estimate
Truck	-30	20	



Compression and after treatment

	Temperature (°C)	Pressure (bars)	Comment
Pipeline	10 (NL)	80-200	Pressure drop in pipeline is compensated by high entrance pressure
Ship	-54 to -50	6 to 7	Liquid > 6 bar , <-55
Train	-10 to -20	25	Own estimate
Truck	-30	20	



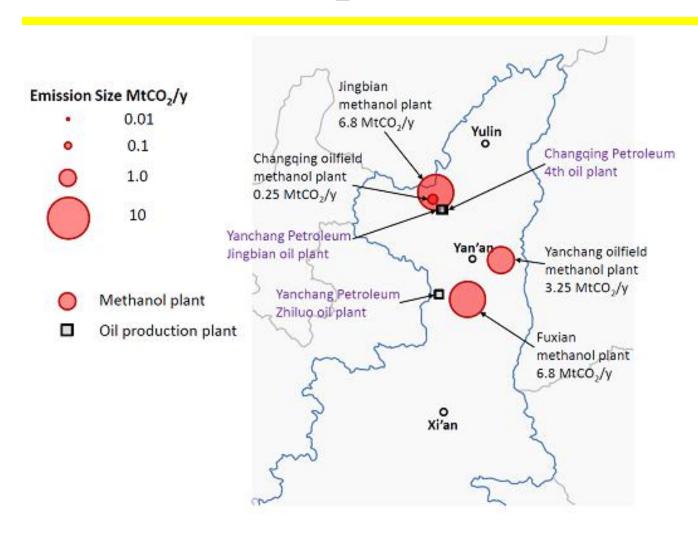
"Capture" cost

- Since the CO₂ removal step is necessary in the industrial process, its costs are not attributed to CCUS!
- Costs are associated only with:
 - Investment costs for:
 - ➤ Purification, dying and Compression or liquefaction 85 M\$ for 4 Mton/year
 - Energy costs for:
 - ➤ Liquefaction
 ➤ Compression
 130 kWh/kg CO₂
 110 kWh/kg CO₂
- Total cost $12-15 \$ ton of CO₂

Large point CO₂ sources and EOR **ECN** potential

EOR potential in Shaanxi

Yanchang oil field


- 2010 production 12 million ton oil
- Ownership: Shaanxi provincial government
- Estimated indicative storage capacity: 45~88Mt CO₂
- EOR plans: promote and apply water flood recovery, actively research and develop CO₂-EOR

Changqing oil field

- Part of Shaanxi-Gansu-Ningxia basin
- Proven geological oil reserves of about 336 million tons, controlled reserves of about 394 million tons and prognostic reserves of about 533 million tons since 1999.
- Ownership: PetroChina
- Indicative storage capacity: 41~80Mt CO₂
- EOR plans: currently promote and apply water flood recovery, actively research and develop CO₂-EOR

High-purity CO₂ sources in Shaanxi

CO₂ transportation options in Shaanxi

- Road flexible, using existing road infrastructure
- Rail flexible, using existing rail infrastructure
- Pipeline more cost-effective, suitable for larger volumes (>2MT/yr), full-scale demonstration projects

- Road and rail most suitable in early stages of CCUS development in Shaanxi
- Pipelines most suitable for larger scale CCUS projects in Shaanxi

Integrated CCUS projects in Shaanxi

Project	CO2 sources	Emission volume	Transportation method	Storage type	Storage location
Case 1	Yanchang oil field methanol plant	3.2 Mt/yr	pipeline	EOR	Yanchang oil field
Case 2	Yanan Fuxian methanol plant	6.8 Mt/yr	pipeline	EOR	Yanchang oil field
Case 3	Changqing oil field methanol plant	0.25 Mt/yr	Highway/railway tanks	EOR	Changqing oil field
Case 4	Jingbian methanol plant	6.8 Mt/yr	pipeline	EOR	Changqing oil field

Cost-Benefit Analysis Shaanxi CCUS projects

	CO2 capture cost	Transportation cost	Injection cost ⁵	Total CCS cost ⁶	Total CCS cost after considering the oil benefit ⁷
Case 1	15~20	1.6 ¹	6	22.6~27.6	-50.4~5.6
Case 2	15~20	1.72	6	22.7~27.7	-47.3~5.7
Case 3	15~20	3.2 ³	6	24.2~29.2	-45.8~7.2
Case 4	15~20	0.44	6	21.4~26.4	-48.6~4.4
Capture from power sector	~22	~11	~4.6	~37	

Barriers to CCUS development in Shaanxi

Policy and regulatory:

- Lack of clear national CCUS development roadmap
- No legal framework for regulating industrial CO₂ emissions
- No regulatory framework for managing CCUS safety aspects

2. Technical:

- CO₂ EOR technology not mature in China
 - Value of CO₂ for EOR not clear
 - Business case for CCUS cannot be made concrete
- No CO₂ monitoring system in place

3. Finance:

- First-of-a-kind project requires special sources of funding
- high initial investment requires strong business case and long-term certainty regarding key economic conditions
- lack of funding mechanisms and sources

Conclusions

- CCUS is a key climate change mitigation option globally and in China
- Globally CCUS demonstration has focused on the power sector, at relatively high cost
- Capture cost are lower at high-purity industrial sources with a global and China potential of 750 MtCO₂/yr and 120Mt CO₂ /yr by 2050.
- Preliminary cost-effective potential for developing 4 integrated full-chain CCUS projects based on high-purity CO₂ sources and utilization for EOR exists in Shaanxi Province.
- Key barriers impeding the development of this cost-effective potential include the lack of a national CCUS roadmap, further required development of China's EOR capabilities, required coordination between government organisations, lack of a cap or price on CO₂ emissions and lack of funding mechanisms.

Demo project development recommendations

- Conduct detailed technical and economic feasibility assessments for the identified 4 Shaanxi projects
- Select 1 national high-purity CO₂/EOR demonstration project in Shaanxi
- Develop detailed business models for the operation of the national demonstration project
- NDRC and MOST to coordinate key authorities for full chain projects

Acknowledgment

- Dr. Gao Lin, Dr. Li Sheng, Institute of Engineering Thermophysics, Chinese Academy of Sciences
- Emiel van Sambeek, Azure International
- Richard Porter, University of Leeds
- Tom Mikunda, Heleen de Coninck, Energy research Centre of the Netherlands

Cost-Benefit Analysis assumptions

- 1. Pipeline transportation, 150km
- 2. Pipeline transportation, 300km
- 3. Highway tanks transportation, 100km.
- 4. Pipeline transportation, 300km.
- 5. Excluding EOR benefit: data from IPCC special report on carbon capture and storage.
- 6. Excluding EOR benefit.
- 7. Including the benefit from oil production. Based on IPCC report, the net EOR cost is around -16\$/t assuming the oil price is 20\$/t. In this report, the oil price is assumed to range from 20\$/t to 100\$/t.
- 8. CO2 is captured from traditional coal-fired power plant.
- 9. Pipeline transportation, 300km.

