

TGA Thermogravimetric analysis for torrefaction

A.H.H. Janssen

October 2012 ECN-L--12-085

TGA Thermogravimetric analysis for torrefaction

WP8 - 1st technical meeting

Arno Janssen

Vienna, Austria October 25th, 2012

www.ecn.nl

TGA Experimental validation of TGA method

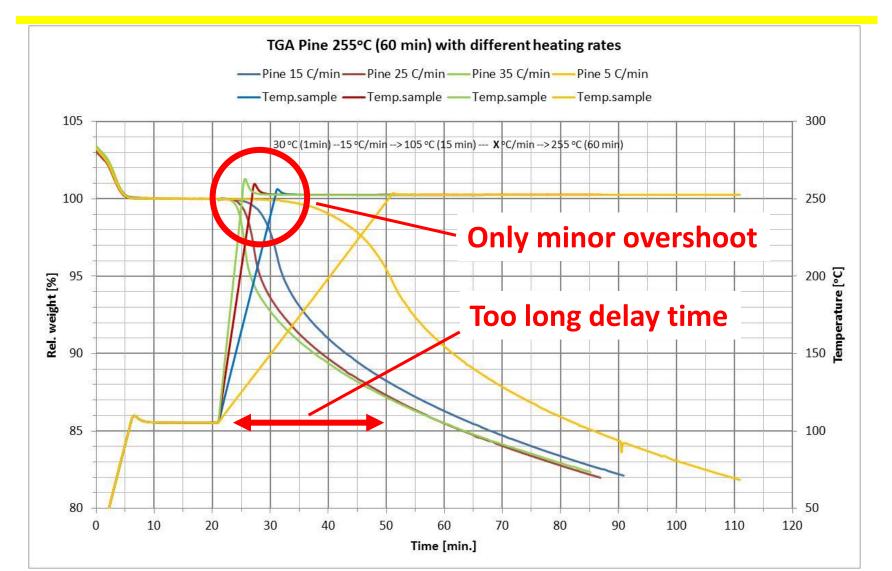
In order to verify the effect of heating rates on mass yields in TGA several experiments have been performed with <u>10-20 mg ground chips</u> (pine).

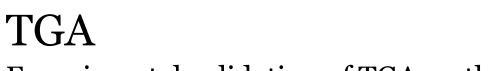
In all these experiments a *residence time of 60 minutes* was chosen. A 60 minutes TGA allows interpretation for shorter residence times as well.

The temperature profile applied in these TGA experiments consists of:

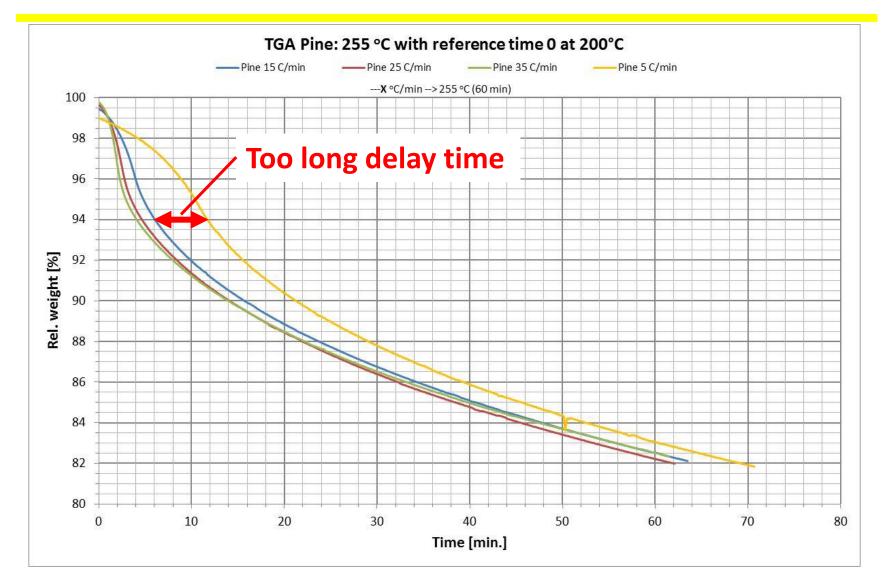
 Start of experiment: Heating to drying temperature: Drying: Heating to torrefaction temperature: Torrefaction: 	30°C for 1 mi 15°C/min 105°C for 15 χ°C/min T°C for 60 m
- Iorrefaction:	T°C for 60 m

- Cooling with nitrogen:

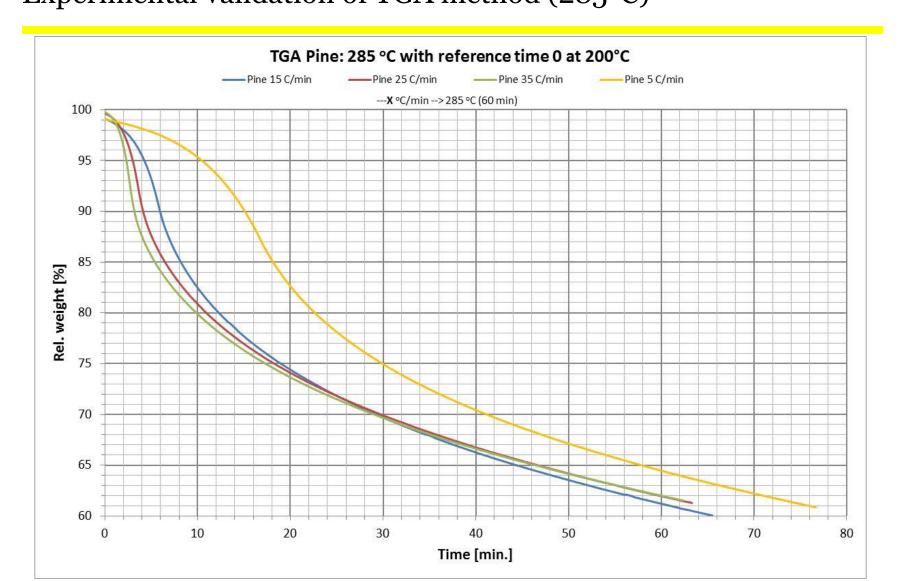

ninute 5 minutes ninutes


<30°C

Summarised in an equation this results in the following temperature profile: $30^{\circ}C$ (1 min) \rightarrow 15°C/min \rightarrow 105°C (15 min) $\rightarrow \chi^{\circ}C/min \rightarrow T^{\circ}C$ (60 min) \rightarrow 30°C (stop)


TGA Experimental validation of TGA method (255°C)

Experimental validation of TGA method (255°C)


TGA Experimental validation of TGA mot

Experimental validation of TGA method (285°C) TGA Pine 285°C (60 min) with different heating rates

TGA Experimental validation of TGA method (285°C)

TGA Standardised TGA method

ECN

Initial amount of biomass 10-20 mg ground chips (pine).

Residence time of 60 minutes at the torrefaction temperature.

The temperature profile applied in these TGA experiments consists of:

- Start of experiment:
- Heating to drying temperature:
- Drying:
- Heating to torrefaction temperature:
- Torrefaction:

- Cooling with nitrogen:

30°C for 1 minute 15°C/min 105°C for 15 minutes 25°C/min T°C for 60 minutes

<30°C

Summarised in an equation this results in the following temperature profile: $30^{\circ}C (1 \text{ min}) \rightarrow 15^{\circ}C/\text{min} \rightarrow 105^{\circ}C (15 \text{ min}) \rightarrow 25^{\circ}C/\text{min} \rightarrow T^{\circ}C (60 \text{ min}) \rightarrow 30^{\circ}C (\text{stop})$

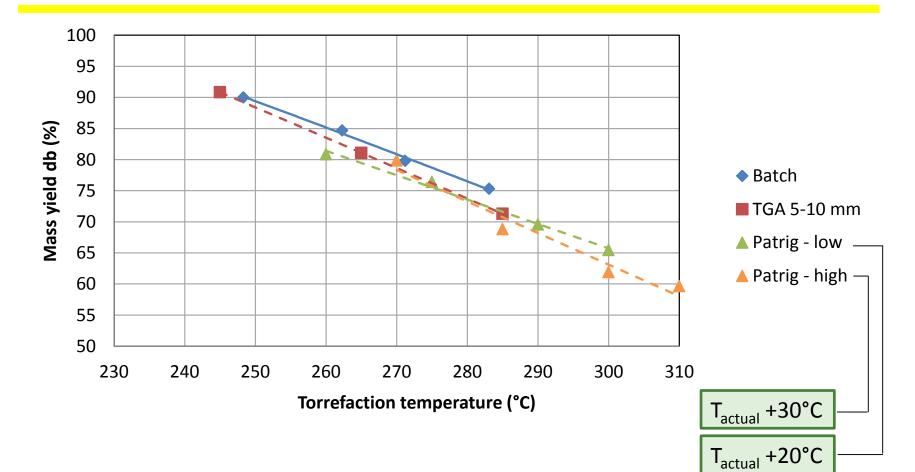
ECN

TGA Comparison with batch and pilot scale tests

Amounts of biomass used for the tests:

- TGA: 10-20 mg ground chips
- Batch: 3-4.5 kg chips
- Patrig (pilot scale): 50 kg/hr chips

Temperature gradient during tests:


- TGA: ++
- Batch: +
- Patrig (pilot scale): o

Time determination during tests:

- TGA: ++
- Batch: +
- Patrig (pilot scale): -

TGA Comparison with batch and pilot scale tests

Standing at under provide in the standard from t

TGA Conclusions

TGA measurements:

- are relatively fast
- use only a very small amount of material
- deliver accurate results.

In comparison with other torrefaction reactors:

- the right sample size has to be used
- highly valuable in predicting the behaviour of the feedstock.

Thank you for your attention!

This presentation was prepared within the framework of the EU FP7 project:

Production of **S**olid Sustainable Energy Carriers from Biomass by Means of **TOR**refaction

For more information, please contact:

Arno Janssen

Researcher bioenergy Biomass & Energy Efficiency

T +31 88 515 45 63 F +31 88 515 84 87 a.janssen@ecn.nl P.O. Box 1, 1755 ZG PETTEN The Netherlands www.ecn.nl

ECN

Westerduinweg 3 1755 LE Petten The Netherlands P.O. Box 1 1755 LG Petten The Netherlands

T +31 88 515 4949 F +31 88 515 8338 info@ ecn.nl www.ecn.nl