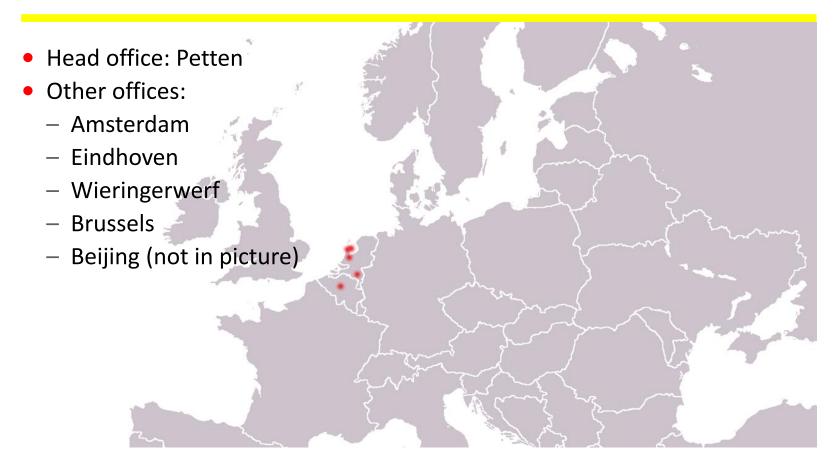


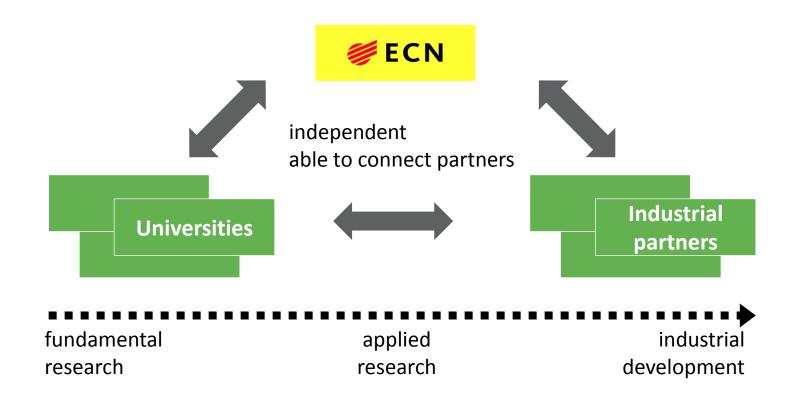
Ethanol-based Organosolv Biorefineries: Feedstock-Flexibility & Economic Evaluation

Ethanol-based Organosolv Biorefineries: Feedstock-Flexibility & Economic Evaluation


Raimo van der Linden, Wouter J.J. Huijgen, Johannes H. Reith

NWBC, Helsinki 25-10-2012

www.ecn.nl



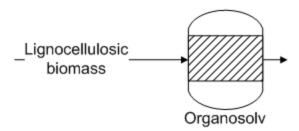
ECN – Geographical position

ECN – Position among partners

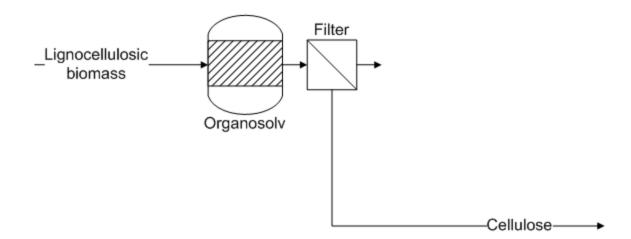
Organosolv – Why?

- Fractionation of all major constituents
- Valorization of all major constituents
 - Increased revenue from biorefinery
 - Financially more attractive

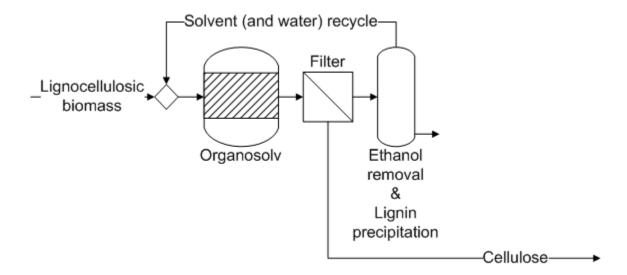
Cellulose: High conversion enzymatic hydrolysis


Lignin: High-quality for production of chemicals

Hemicellulose: Choice for xylose or xylose derivatives (furfural)


- Specific for lignocellulosic biomass
- Organosolv reactor:

 $Biomass_{(s)} \rightarrow Cellulose_{(s)} + Lignin_{(EtOH/H2O)} + Hemicellulose_{(EtOH/H2O)}$



• A filter removes cellulose from the liquid mixture

- Lignin is precipitated by removing the ethanol (lowering lignin solubility)
- Ethanol recycling is 99.9%; Crucial for economics

- A filter separates the lignin from the C5 sugars
- Organosolv can fractionate all three main biomass components into separate streams

Method

Choose feedstocks → Optimize experimentally

→ Simulate (modeling) \rightarrow Conclude, present

-Birch

-Temperature

-Full scale

-Economics

-NWBC

-Poplar

-Conc. H₂SO₄

factory

conference

-Wheat straw

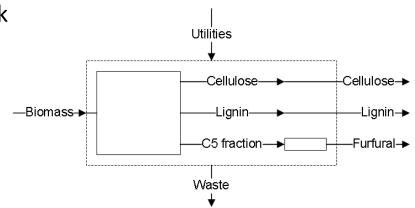
-Rice straw

-EtOH: H₂O

-Residence time

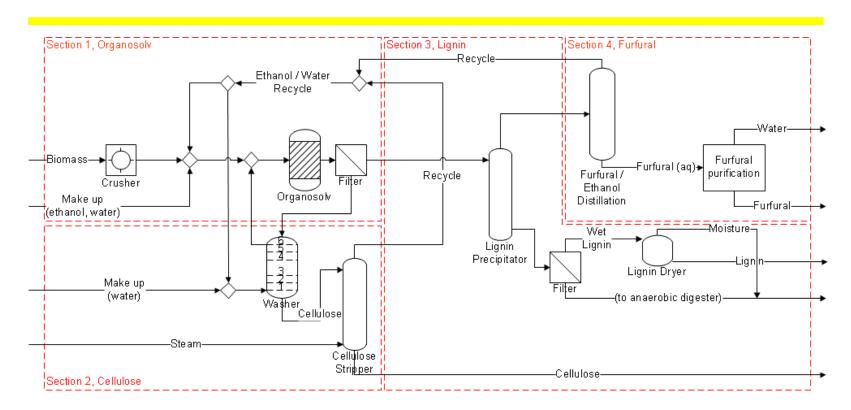
Optimal process conditions

 Organosolv process conditions optimized in parametric study (experimental)


Feedstock	Birch	Wheat straw	Rice Straw	Poplar
Temperature (°C)	190	190	200	210
H ₂ SO ₄ (mM)	5	30	50	15
EtOH:H ₂ O (w/w)	50:50	60:40	60:40	60:40
Enz. glucose yield (%)	99%	98%	89%	~100%
Lignin recovery (% wt)	80%	79%	86%	95%

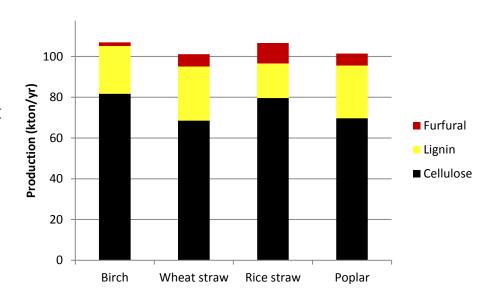
- Enz. glucose yield: analysis method possibly causes slight overestimation
- Lignin recovery: on biomass dry weight basis

Organosolv biorefinery (simulation)


- 150 kton/yr (dw) biomass feedstock
- Biomass:
 - Birch
 - Poplar
 - Wheat straw
 - Rice straw
 - Flexible feedstock
- Products (chosen)
 - Cellulose
 - Lignin
 - Furfural

- Software
 - Aspen Plus
 - Excel

Process flowsheet



Production

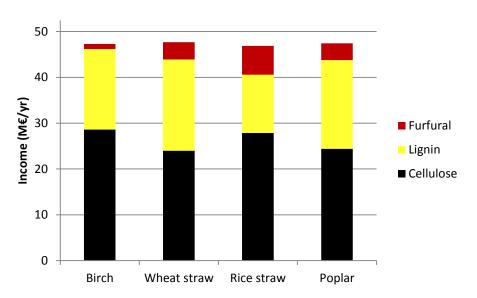
Cellulose by far largest product in weight

Products

- Pulp
 - Cellulose content varies
 - Will hydrolyze to large extent
- Lignin
 - < 1% carbohydrates</p>
 - $\sim 0\%$ ash
- Furfural
 - 99.9%

Income

- Cellulose is largest product in terms of economy
- Lignin critical to create added value from biomass

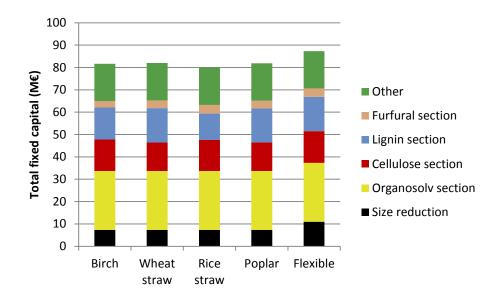

Product prices

• Cellulose: 350 €/ton

• Lignin: 750 €/ton

• Furfural: 625 €/ton

Room for improvement:
 Further utilization C5 fraction


Capital cost estimate

- Based on literature methods and data from manufacturers
- Scale of cellulose / lignin / furfural sections depends on production volume
- 5th case added: flexible feedstock
- 25% Birch, 25% wheat straw, 25% rice straw, 25% poplar
 - 50% investment added to size reduction section
 - Cellulose / lignin / furfural sections scaled to maximum possible production volume

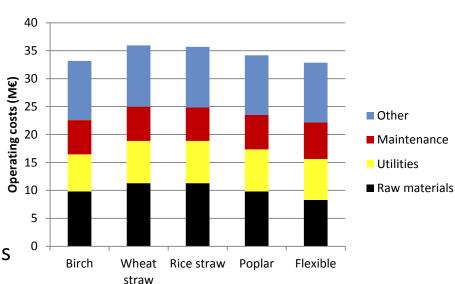
Capital cost estimate

- CAPEX highest for flexible feedstock biorefinery
- Organosolv reactor section most expensive
- Extremes cancel each other out

Operating costs

- Flexible feedstock biorefinery:
 - Feedstock costs lower for flexible biorefinery
 - Maintenance higher
- Straw more expensive feedstock (assumed)

• Birch: 60 €/ton dw


• Wheat straw: 70 €/ton dw

Rice straw: 70 €/ton dw

Poplar: 60 €/ton dw

Flexible: (average – 15 €)

Benefit from market fluctuations

Conclusions Economic Analysis

- Payback times of Birch, poplar and flexible feed lowest
- Operating costs of mixed feed lowest, CAPEX highest

	Birch	Wheat straw	Rice Straw	Poplar	Flexible feed
Income (M€/yr)	47.3	47.7	46.9	47.4	47.3
OPEX (M€/yr)	33.2	35.9	35.7	34.2	32.8
CAPEX (M€/yr)	81.7	82.0	80.0	81.8	87.3
Payback time (yr)	5.8	7.0	7.2	6.2	6.0

Take home message

- Feedstock price very important
- Feedstock-flexible biorefinery economically interesting, despite higher CAPEX, due to lower feedstock prices
- Organosolv is a feedstock-flexible technology

Thank you for your attention

More information: vanderlinden@ecn.nl

The work reported here has been performed in the framework of the EC Integrated Project BIOCORE, with funding from the European Community's SeventhFramework Programme (FP7/ 2007-2013) under grant agreement n°FP7-241566.

ECN

Westerduinweg 3 P.O. Box 1
1755 LE Petten 1755 ZG Petten
The Netherlands The Netherlands

T +31 88 515 49 49 info@ecn.nl F +31 88 515 44 80 **www.ecn.nl**

http://www.biocore-europe.org/

