

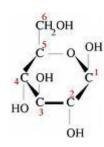
Large-scale carbon recycling via cultivation and biorefinery of seaweeds for production of biobased chemicals and fuels

Large-scale carbon recycling via cultivation and biorefinery of seaweeds for production of biobased chemicals and fuels

Hans Reith, Jaap W. van Hal, Jip Lenstra

Conference on Carbon Dioxide as Feedstock for Chemistry and Polymers,
Essen, Germany, October 10th-11th 2012

Solar Energy Conversion: Photosynthetic CO₂ reduction



- $H_2O + CO_2 + (8+n) hv \rightarrow (CH_2O) + O_2 + heat$
- 477 kJ chemical energy stored per mol fixed CO₂

- Maximum theoretical energy conversion efficiency is 8.2–12.2%
 - Losses in photosynthetic system (fluorescence, heat)
 - Respiration for translocation/ biosynthesis demands 33% of stored energy
 - Effective surface usage is 10–80 %, depending a.o. on type of plants
 - Suboptimal growth conditions

- Energy conversion efficiency most terrestrial plants 0.5 0.8%
- Micro-algae, seaweeds able to attain 4.3 6.5%

Features of seaweeds

- CO2 uptake from water/atmosphere
- High biomass productivity (also in cold seawater)
- Large cultivation area available
- Limited competition with food or other land use issues/resources
- Potential positive ecological effects cultivation
- Composition: carbohydrates up to 65 wt%, protein 15 wt%, minerals 20 wt%.
 Carbohydrate platform.
- Multiple options for biobased chemicals and fuels production >> net CO2 reduction
- Cultivation in off-shore wind turbine parks
- Large-scale floating cultivation in the oceans

Marine biomass energy potential

Most feasible technical concepts	Area	Potential	
Set 1: Land based open ponds for	Arid land in (sub) tropical zones (deserts)	90 EJ	
microalgae	and close to coast (max 100 km)		
Set 3: Horizontal lines for	At existing infrastructure – f.e. offshore	110 EJ	
macroalgae	wind farms (up to 100 km offshore)	110 E)	
Set 5: Vertical lines for macroalgae	Near coast (max 25 km) in nutrient rich	35 EJ	
	water		
Set 6: Macroalgae colony	At open sea (biological deserts), up to	~6000 EJ	
Sec of Hadrodigae colony	2000 km offshore	130000 E3	
TOTAL		~ 6235 EJ	

Source: Ecofys, 2008. Worldwide Potential of Aquatic Biomass. 100 Million km2 @ 30 ton d.w. (20 GJ/ton) seaweed ha.yr

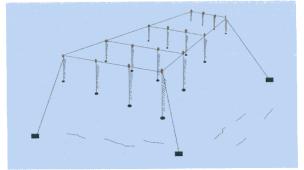
World energy consumption: 480 EJ/yr.

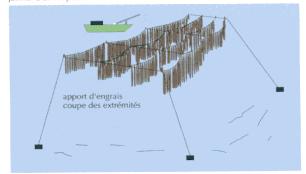
Current seaweed exploitation

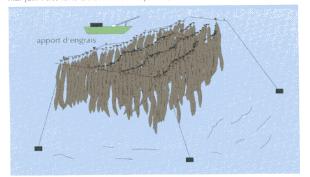
Macrocystis pyrifera (giant kelp);California*

Gracillaria line cultivation

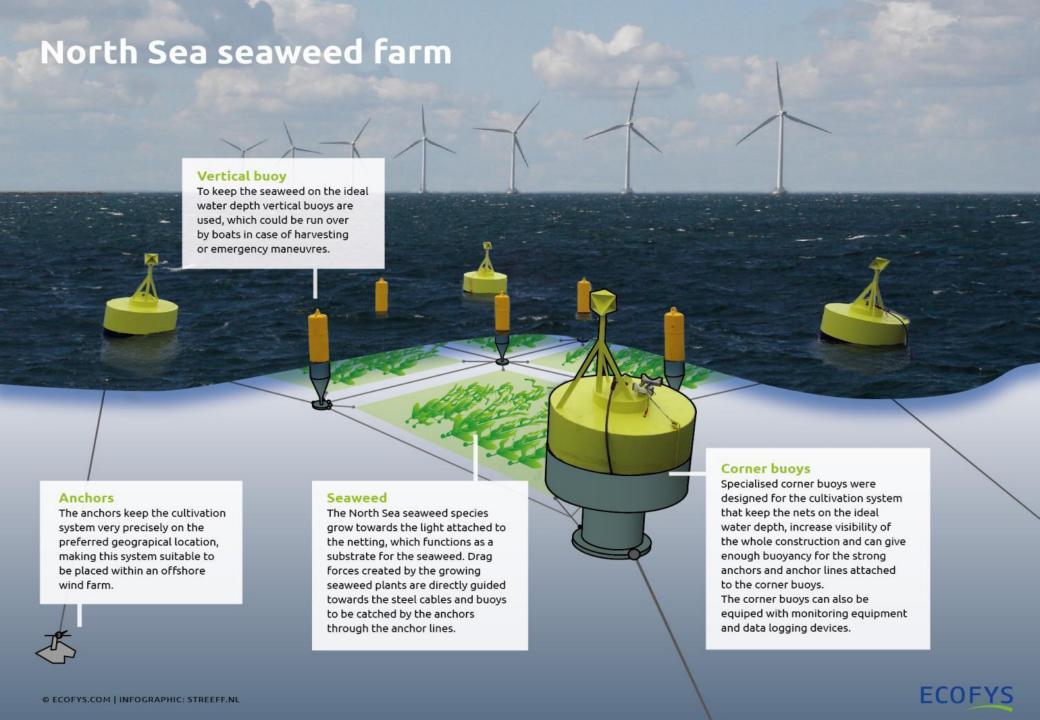
- Current world production: >10 Mton yr (China, Philippines, Indonesia, USA, France, Ireland, Norway, ...)
- Harvest natural populations / Cultivation: line systems
- Major applications: food, phycocolloids as thickeners/gelling agents, extracts for cosmetics, animal feed/aquaculture, fertilizer....
- Market size ca. 6 Billion US\$ / year; 2 a 3% growth per year


Seaweed harvest in Asia (Photo Ifremer)


Harvest of Macrocystis in the Pacific (Kelco company)



janvier à avril : position horizontale



mai-juin : très forte croissanse début juillet (récolte)

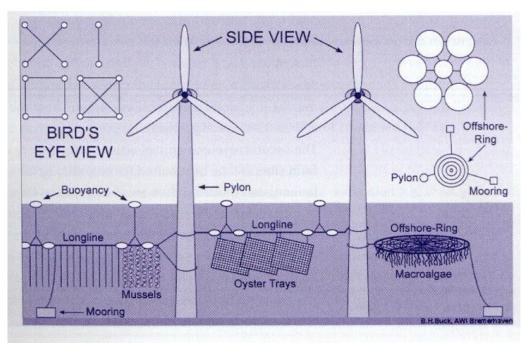
Experimental ring system for cultivation of Laminaria (AWI-Bremerhaven, B.H. Buck *et al*): Good stability in the German North Sea shown

Figure 143 - Disposition des cordages porteurs en pleine mer. Dans un premier ter

North Sea Test Farm

- Realistic, off-shore conditions
- Complete monitoring phase including harvest
- Analyse strength and weakness of design
- Plans to expand North Sea Test Farm: Ecofys, NIOZ, Hortimare, ECN
- Facilitate 3rd party research initiatives
- Investigate sustainability of seaweed farming

Cultivation in offshore wind parks



Wind turbine parks planned & developed in the North Sea

- Area closed for shipping
- Multifunctional use of area and offshore constructions
- Potential combination with other aquaculture, mussel cultivation
- Joint O&M: personnel, vessels, equipment: Synergy and cost benefits

Source: Bela H. Buck, Alfred Wegener Institute, DE.

Seaweed species native to the North Sea

Saccharina latissima

Ulva sp.

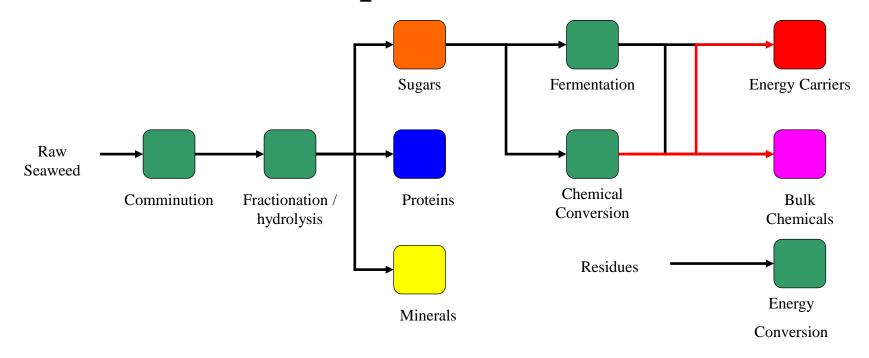
Laminaria digitata

Alaria esculenta

Laminaria hyperborea

Palmaria palmata

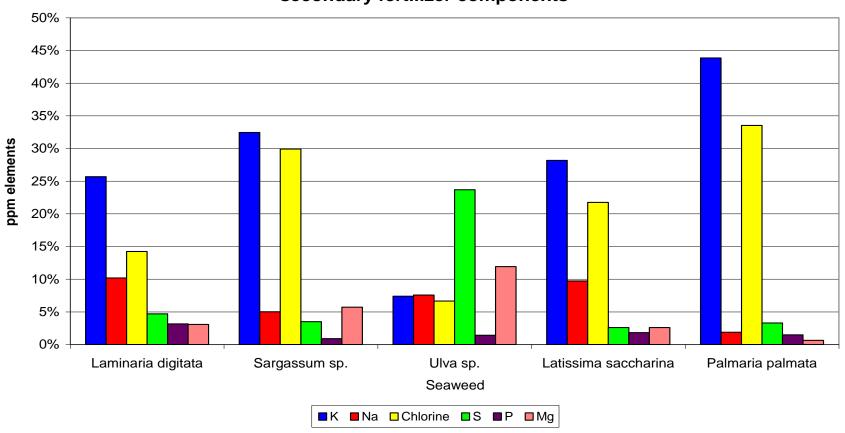
Product options Laminaria sp.



Component	Contents in w% d.w.	 Range of polysaccharides, protein no lignin
Cellulose	6	 Suitable feedstock for biorefiners
Hemicellulose	0	production of chemicals and fue
Lignin	0	optimum valorization
Lipids	2	optimum valorization
Proteïns	12	
Starch	0	 Higher value compounds: alginate
Alginates	23	proteins, mannitol (extract
Laminaran	14	 Animal feed (protein fraction)
Fucoidan	5	
Mannitol	12	 Furanics (carbohydrate conversion
Total fermentable	60	Butanol (fermentation)
sugars		 Bleach activators (derivatization)
Ash contents	26	 Phosphate recycling/fertilizers (A
		Filosphate recycling/lentilizers (F

- ins, minerals,
- ry for coels to attain
- ites, fucoidan, ction)
- ion)
- (Ash utilization)

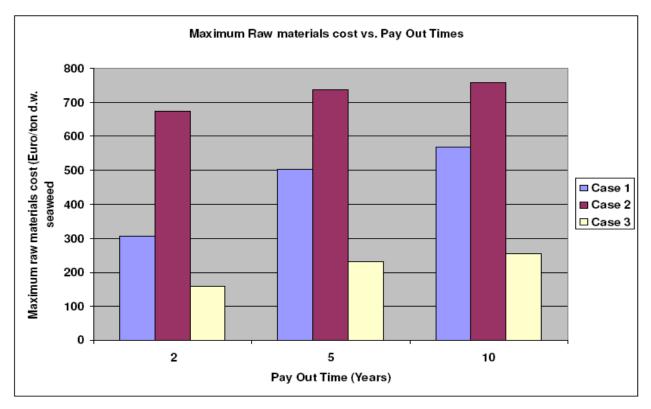
Development of biorefinery technologies for chemicals and fuels production


NL project Seaweed Biorefinery, results to date:

- Mild fractionation to preserve structure and functionality of components
- Enzymatic hydrolysis feasible using commercial enzyme cocktails
- Successful fermentation sugars to Acetone-Butanol-Ethanol (ABE) shown
- Catalytic conversion sugars to furanics

Minerals

Elemental Analysis Seaweeds as percentage in ASH, primary and secondary fertilizer components


- Plus appreciable amounts of trace elements, incl. B, Mn, Fe, Zn, Cu, Mo, Se,...
- Fertilizer 'ore' or recycling to sea

Economics: Product spectrum

Product	Estimated Value (Euro/ton)
Mannitol (valued as sorbitol)	1,500
Fumaric acid (as adipic acid)	1,600
Fucoidan (as detergent)	2,900
1-Butanol (chemical grade)	1,200
Ethanol (fuel grade)	600
Protein	1,000
Fertilizer (as ore)	350
Furanics	800
Alginates	3,000

Max. allowable seaweed costs based on projected sales revenues for Pay Out Time 2, 5, 10 yrs **ECN**

Scale biorefinery 330 kt/yr

= 110 km2 @ 30 ton/ha/yr

Estimates CAPEX, OPEX

1: Full Biorefinery: mannitol, fucoidan, furanics, fumaric acid, protein, K-"ore": 300-600 €

2: Extraction of alginate, fertilizer (K,P) and energy (AD + CHP): 650-750 €

3: Simplified Biorefinery producing butanol and fertilizer: 150 - 250 € /ton d.w

Seaweed production cost

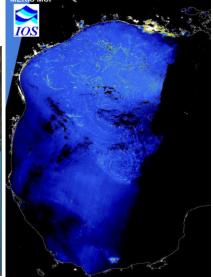
	1				ľ	
Type of cultvation system	Productivity			Costs		Reference:
	ton daf/ ha.yrr	ton d.w./ ha.yr	\$ ton da		\$ (or €) / ton d.w.	
Chili: harvest of natural populations	_	-	-		250	Internet
Philippines: coastal cultivation; 'off-farm' price	_	-	-		80 - 160	Internet
Nearshore cultivation Macrocystis	34 50	57 83	67 42		40 25	[3]
Gracillaria/Laminaria line cultivation (offshore)	11 45	14 59	538 147		409 112	[3]
Tidal Flat farm Gracillaria/Ulva	11 23	14 30	44 28		33 21	[3]
Floating cultivation Sargassum	22 45	32 66	73 37		50 25	[3]


Ref [3]. Chynoweth, D.P. 2002. Review of biomethane from Marine Biomass. History, results and conclusions of the "US Marine Biomass Energy Program" (1968-1990). 194 pp.

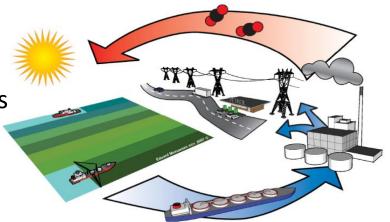
Indication large scale production cost (design studies): 50 € (nearshore/floating) - 400 € (offshore) per ton dw. Verification required.

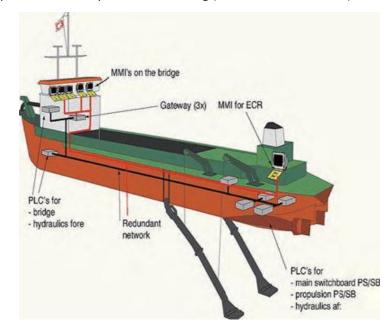
Ocean farm concept

ECN


- Location: ocean gyres/ low current
- Seaweed Sargassum natans:
 - fast growing, floating, global occurrence;
 - uses nitrogen fixation by associated epiphyte or cyanobacteria (Philips et al, 1986)
 - good habitat for fish and many other species
 - can be monitored by satellite (MERIS)

A **spiral oceanic surface current** driven primarily by the global wind system and constrained by the continents surrounding the three ocean basins (Indian, Pacific, Atlantic).




Ocean farm concept

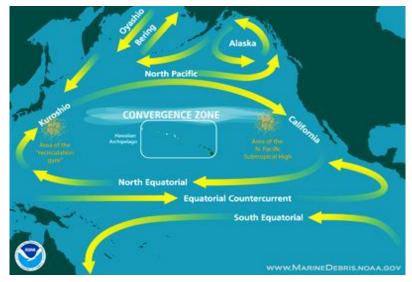
- Farm location in gyre areas marked with buoys (ownership)
- Seeding with small fragments of *S. natans* combined with harvesting
- Selective fertilizer supply (no nitrogen), slow release
- Selective harvesting (no fish or turtles)
- Processing on shore (biorefinery)
- Ecological uncertainties: effects on marine ecosystem: Much more research is needed

Concept for offshore open ocean farming (Herfst, TU-Delft, 2008)

Cost estimate ethanol

- Scale: one harvester\transporter Aframax size (80.000 ton)
- Assumed seaweed density: 10 ton/ha (dw)
- Harvesting capacity 3000 ton/hr (wet)
- Ship rent and fuel costs: 0,3 €/ton/day

	US-harbor (500 km)	Rotterdam (6000 km)
Biomass in harbor (dw)	12 €/ton	35 €/ton
Ethanol plant (on shore)	0,15 €/ltr	0,15 €/ltr
Total ethanol costs	0,20 €/ltr	0,27 €/ltr
Market value ethanol*	0,60 €/ltr	0,60 €/lr
Total per liter petrol eq	0,29 €/ltr	0,40 €/ltr
Market value petrol	0,50 €/ltr	0,50 €ltr



^{* 750} Euro/tonne ethanol

Seaweed to reduce the garbage patches

- Low density and small plastic particles (density 5 ton/km², 5 gram/m²)
- Methods to collect the garbage are expensive
- Collection together with seaweed could be possible with little extra costs
- Approx. 0.25% of dry mass would be garbage

S. natans proteins compared with soy

Sargassum natans

- 6,6% (dw) proteins o.w.:
 - Methionine 2,3%
 - Lysine 4,5%
 - Threonine 3,8%

Source: Basil S. Kamel (1980)

Soy beans

- 36,5% proteins o.w.:
 - Methionine 1,4%
 - Lysine 7,4%
 - Threonine 4,9%

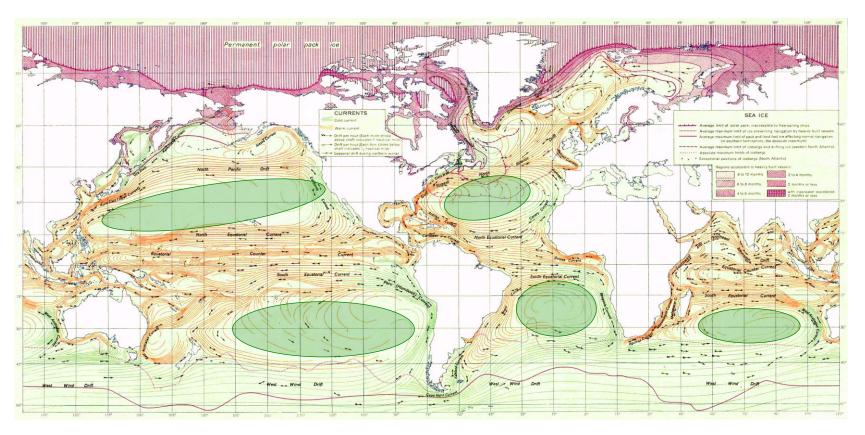
Ca. 5 ton dry S. natans could replace 1 ton soy beans for feed

Conclusions/outlook

- Seaweed cultivation offers a vast potential for CO2 recycling, as a highly productive source of biobased chemicals, biofuels and feed.
- Seaweed cultivation in offshore wind parks offers multifunctional area use incl. potential combination with other aquaculture operations.
- Seaweed from open ocean farming could be
 - a promising source for biofuel production with low costs
 - a source of proteins for cattle and fish feed
 - seaweed harvesting could help reduce ocean garbage
- Many uncertainties, R&D required
 - Development of offshore cultivation systems
 - Nutrient supply/recycling
 - Harvesting and logistics
 - Processing
 - Environmental and socio-economic impacts.

Acknowledgements

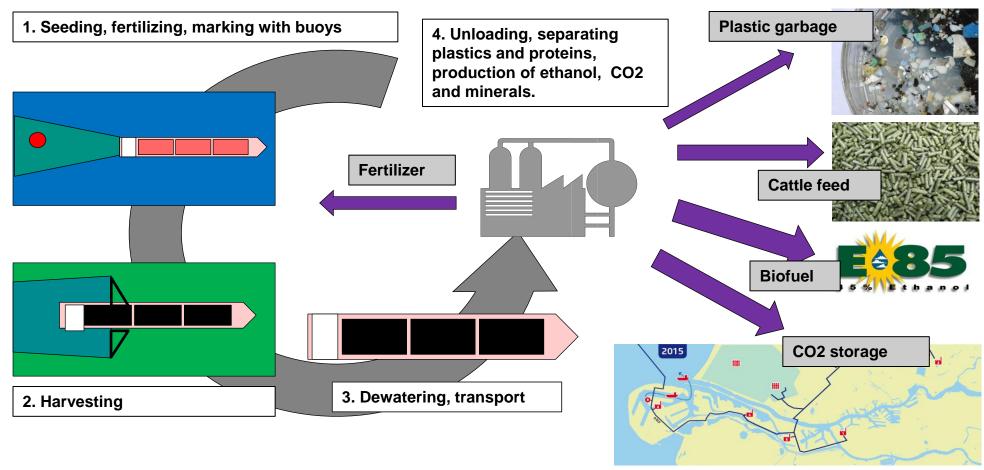
- Wouter Huijgen, Claudia Daza-Montano, ECN BEE
- Ana Lopez-Contreras, Rolf Blaauw, Paulien Harmsen, Jacco van Haveren, WUR-FBR
- Anouk Florentinus, Ecofys


Project Seaweed biorefinery (2009-2013) supported by the NL Dept. of Economy, Agriculture and Innovation under project no. EOS LT 08027. www.seaweed.biorefinery.nl

Contacts

- Jaap van Hal: vanhal@ecn.nl
- Jip Lenstra lenstra@ecn.nl www.ecn.nl

Ocean potential: >25.000.000 km²



- Current global agricultural crop area: 15.000.000 km2 (FAO, 2006)
- At 1000 ton/km2 (10 ton/ha): 25.000 Mton seaweed biomass (375 EJ) 32 Gton CO2 fixed, at 30% net CO2 reduction: 9.6 Gton CO2 avoided (vs Global total emission 29 Gton CO2; transport: 6.5 Gton CO2

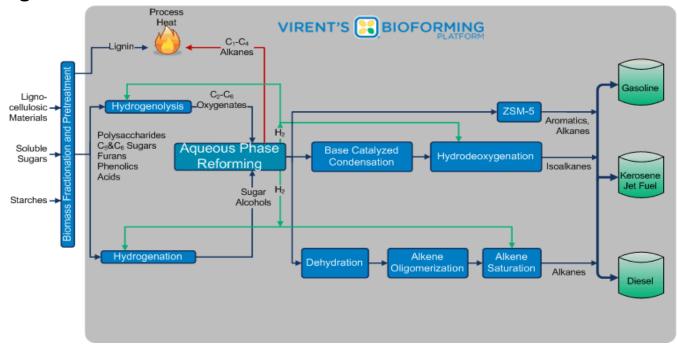
Ocean seaweed to fuel chain

Shell, AB Rotterdam deliver CO2 to OCAP > horticulture

Brown seaweed carbohydrates

Mannitol

Fucoidan


Laminarin

Alginic acid

Potential energy carriers from seaweed

- Ethanol, butanol from sugars (≥ 60 wt%) via fermentation
- Diesel and jet fuel via Aqueous Phase Reforming technology
- Bio crude via HTU
- Methane via anaerobic digestion

