

The impact of Electric Vehicles on European Energy Networks

Sytze Dijkstra ECN Policy Studies

Grid Capacity and Stability Conference London, 21 June 2012

www.ecn.nl

Position

development

applied research

fundamental research

R&D fields

Biomass

Energy Efficiency & CCS

What we do

• Problem solving

Using our knowledge, technology, and facilities to solve our clients' issues

- Technology development
 Developing technology into prototypes and industrial application
- Studies & Policy support

Creating insights in energy technology and policy

Overview

- Electric vehicles for reducing GHG emissions from transport
- Interaction with electricity networks
- Managing the threats, maximising the opportunities
- The way forward

Electric Vehicles for reducing GHG emissions from transport

Reducing GHG emissions from transport

Technology

- Improving fuel efficiency of conventional vehicles
- Shift towards less carbon-intensive energy carriers
- Shift towards less carbon intensive modes of transport
- Curbing demand growth
 - Soft: taxation or price incentives
 - Hard: regulation

Lifestyle

Technology options

The wide range of energy carriers available for delivering renewable energy to road vehicles allows a smooth transition from a fossil-based to a sustainable transport system

EVs allow for significant GHG emissions reductions

EV: 13 kWh/100 km; PHEV: 3.0 I and 8 kWh/100 km

Interaction with electricity networks

www.ecn.nl

EVs and networks

Charging EVs and the network

• Evs connected to medium and low-voltage electricity grids

Causes higher peak demand

ECN

• Expensive under existing *Fit-and-Forget* network planning

Specific impacts on electricity networks

- Simultaneous charging of a large amount of Evs -> unacceptable
 voltage drop from the transformer to the end of the lines.
 - Compensate by reactive power, possibly provided by EVs
- Loss or surplus of power -> deviation from nominal frequency
 Frequency-dependent charging
- Additional power flow -> transformer overload (overheating)
 Control charging process
- Large feed-in of electricity from EVs -> lack of short-circuit power
 - Oversize converters / add short circuit power capacity
- Sudden simultaneous charging / discharging -> grid instability
 Control charging process
- Impacts vary with quality of the grid locally
 - Rural \leftrightarrow urban
 - Developed country \leftrightarrow developing country

Managing the threats, maximising the opportunities

www.ecn.n

EVs and networks

Source: IEA, Energy Technology Perspectives 2010, Blue Map Scenario

ECN

- Coinciding with rapid increase in renewable electricity generation
- Leading to higher variability of supply
 - Wind energy production and electricity demand in Denmark

Source: Ecogrid, 2007

Uncontrolled charging: a headache

ECN

EVs and networks

Controlled charging: using demand-side flexibility

ECN

Are people happy to get on board?

- Delayed charging for €2 instead of €3 for full charge
- 19% skeptical

Reason for not participating

Vehicle-to-grid options

- Aggregation of EVs
- Communication systems
- Potential:
 - Number of EVs
 - Charging behaviour
- Impact on battery lifetime
- Medium-term

Ancillary services: balancing renewables

💓 ECN

Storage: optimising renewable electricity supply

 Table 1
 Available power from electric vehicles connected to the grid depending on the power of the charging connection

Vehicles	Power Connection	Power	Energy	Duration
10,000	3.7 kW	37 MW	262.5 MWh	7.1 h
10,000	11 kW	110 MW	262.5 MWh	2.4 h
10,000	22 kW	220 MW	262.5 MWh	1.2 h

that can be provided by 1 million electric vehicles during a day in Germany

Ļ	ed charging		
	Controlled charging		
	Active load management Ancillary services (unidirectional) Charging with renewable energy		
-in nd]	Storage of renewable energy Ancillary services (bidirectional)		
1 11 1			

Figure 22 Additional power capacity to store a surplus of renewable energy from 1 million electric and plug-in hybrid vehicles in Germany, based on unidirectional power supply, 3.7 kW charging power and nominal charging op to a target State-Of-Charge of 90% [own calculations, IFHT, RWTH Aachen]

services

Penetration rate of electrical vehicles

Source: IEA, RETRANS

The business case

• Largest opportunity for providing primary reserve

(Analysis for each country necessary because of different grid codes and legal requirements) (50% availability of EV and PHEV, a=year, based on prices in 2009 in Germany reserve energy market.)

	IN GERMANY		Negative spinning reserve (unidirectional/bidirectional)		Positive spinning reserve (bidirectional)		Annual value	
		Power /	Vehicles	Attributes	Possible revenue	Attributes	Possible revenue	
		time	needed (pooling)					Battery degrading
Ancillary services	Primary reserve	~2 MW, t < 30 s	3.7 kW: > 1000 EV 11 kW: > 400 EV	Only for a bidirectional power connection, legal permission necessary, frequent service			3.7 kW: 300-400 €/a 11 kW: 700-800 €/a	
	Secondary reserve	>10 MW 5s< t <15 min	3.7 kW: > 5500 EV 11 kW: > 2000 EV	Pooling of EV legal possible	Demand rate: 3.7 kW: 10-130 €/a 11 kW: 40-380 €/a free charging possible	Pooling of EV legal possible	Demand rate: 3.7 kW: 60-100 €/a 11 kW: 180-300 €/a Plus 0.10 €/kWh	
	Tertiary reserve	$> 15 \text{ MW}$ $t \ge 15$ min	3.7 kW: > 8000 EV 11 kW: > 3000 EV	Pooling of EV legal possible, rare service	Demand rate: 3.7 kW: < 15 €/a 11 kW: < 35 €/a free charging possible	Pooling of EV legal possible, rare service	Demand rate: 3.7 kW: < 15 €/a 11 kW: 20-60 €/a Plus ~350 €/kWh	

Source: IEA, RETRANS

Are people happy to get on board?

- Interest to participate in vehicle-to-grid scheme (out of 7):
 - 3.88 (France) to
 - 4.94 (UK)

• Benefit primary concern

Price incentives help

- Price incentives are needed to stimulate consumers to take part in vehicle-to-grid schemes
 - With €60 p.a. about 50% more interested than with €20 p.a.

The way forward

- EVs & renewable electricity: the beginning of a beautiful friendship?
- It's complicated
 - Combination of EVs & variable renewable electricity: complex grid management
 - Uncontrolled charging not feasible in long run
 - Controlled charging can mitigate problems
 - EVs can facilitate grid management by providing ancillary services
 - Balance revenue & impact on battery ageing
 - Get end-users on board

Thank you for your attention

ECN

Westerduinweg 3	P.O. Box 1
1755 LE Petten	1755 ZG Petten
The Netherlands	The Netherlands
T +31 224 56 49 49	info@ecn.nl
F +31 224 56 44 80	www.ecn.nl