

SECTOR

Production of solid sustainable energy carriers from biomass by means of torrefaction

- R. Zwart
 - J. Kiel
 - J. Witt
- D. Thrän
- M. Wojcik
- M. English

Presented at the 5th International Freiberg Conference on IGCC & XtL Technologies, 21-24 May 2012, Leipzig, Germany

ECN-L--12-020 May 2012

SECTOR

Production of solid sustainable energy carriers from biomass by means of torrefaction

5th International Freiberg Conference on IGCC & XtL

Robin Zwart, Jaap Kiel, Janet Witt, Daniela Thrän, Magdalena Wojcik and Martin English

Leipzig, Germany May 21st, 2012

www.ecn.nl

Presentation overview

- Introduction to the Energy research Centre of the Netherlands (ECN)
 - General mission
 - Core activities in biomass
- Torrefaction
 - Background & drivers
 - Status torrefaction technology & product quality
- The SECTOR project
 - Facts
 - Scope
 - Objectives
 - Torrefaction technologies considered
 - Structure

Energy research Centre of the Netherlands (ECN)

- Dedicated to Sustainable Energy Innovation With and for the market, ECN develops knowledge and technology that enable a transition to a sustainable energy system
- Core activities in biomass Sustainable energy technology development R&D services to industry Feasibility studies, system ^technology assessments

Biomass

Solar

Wind

Energy efficiency

Policy

Biomass – a difficult energy source

In view of:

- Logistics (handling, transport and feeding)
- End-use (combustion, gasification, chemical processing)

Difficult properties are:

- Low energy density (LHV_{ar} = $10-17 \frac{MJ}{kg}$)
- Hydrophilic
- Vulnerable to biodegradation
- Tenacious & fibrous (grinding difficult)
- Poor "flowability"
- Heterogeneous

Torrefaction – the drivers

Woody biomass

Agricultural residues

Friable and less fibrous 18 - 24 MJ/kg (LHV, ar) More hydrophobic Preserved More homogeneous

Torrefaction and Pulverisation

Fuel powder

Superior fuel properties:

- Transport, handling, storage
- Milling, feeding
- **Gasification**, combustion
- Broad feedstock range
- Commodity fuel

Tenacious and fibrous

7 - 12 MJ/kg (LHV, ar)

Hydrophilic

Vulnerable to biodegradation Heterogeneous

Bulk density 650-800 kg/m³ Bulk energy density 12-19 GJ/m³

Fuel pellets

Product quality

Sources: ECN (table, fig.1, 3) Pixelio (fig. 2, 5) OFI (fig. 4)	Wood chips	Wood pellets	Torrefied wood pellets	Charcoal	Coal	
Moisture content (wt%)	30 - 55	7 - 10	1-5	1-5	10 - 15	
Calorific value (LHV, MJ/kg)	7 - 12	15 - 17	18 – 24	30 - 32	23 - 28	
Volatile matter (wt% db)	75 - 84	75 - 84	55 - 70	10 - 12	15 - 30	
Fixed carbon (wt% db)	16 - 25	16 - 25	22 - 35	85 - 87	50 - 55	
Bulk density (kg/l)	0.2 - 0.3	0.55 - 0.65	0.65 - 0.80	0.18 - 0.24	0.80 - 0.85	
Vol. energy density (GJ/m³)	1.4 - 3.6	8 - 11	12 - 19	5.4 - 7.7	18 - 24	
Hygroscopic properties	Hydrophilic	Hydrophilic	Moderately Hydrophobic	Hydrophobic	Hydrophobic	
Biological degradation	Fast	Medium	Slow	None	None	
Milling requirements	Special	Special	Standard	Standard	Standard	
Product consistency	Limited	High	High	High	High	
Transport cost	High	Medium	Low	Medium	Low	

Abbreviations: db = dry basis LHV =Lower Heating Value

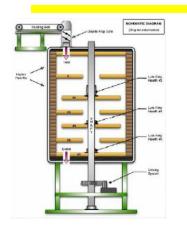
Torrefaction technology

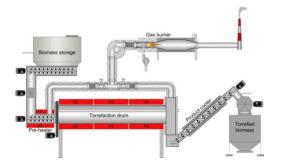
Stramproy Green

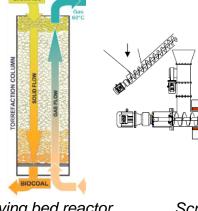
Thermya

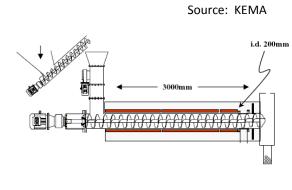
Torrcoal

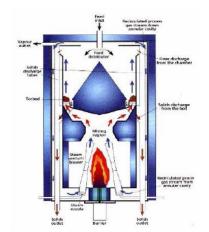
Torkapparater

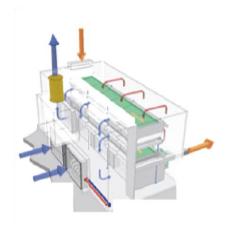




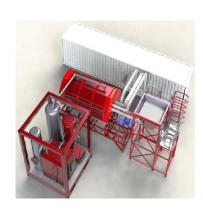

Torrefaction technology


Multiple hearth furnace


Rotary drum reactor


Moving bed reactor

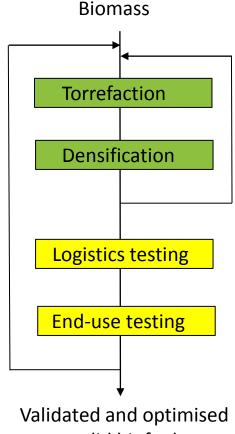
Screw conveyor reactor

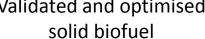

Torbed reactor

Oscillating belt reactor

TurboDryer

Microwave reactor





The SECTOR project – Product quality optimisation

- Pilot, demo and first commercial plants produce kgtonne scale batches allowing representative logistics and end-use performance testing by industry
- Many coal-fired power plants want to be early adaptors and show interest in conducting co-firing trials (e.g., RWE, Vattenfall)
- Product quality optimisation requires a systematic iterative approach (2 iterative loops)
- For this purpose, European torrefaction developers, combustion and gasification technology providers and end-users have joined forces in the EU-FP7 project SECTOR

SECTOR

im Kompetenzzentrum für Nachwachsende Rohstoffe

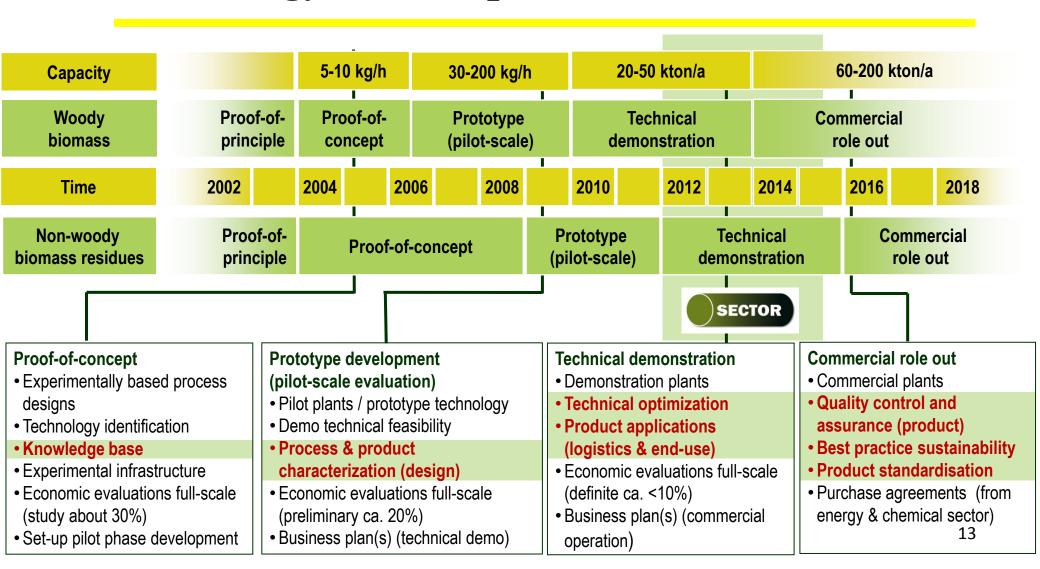
Production of <u>S</u>olid Sustainable <u>E</u>nergy <u>C</u>arriers from Biomass by means of <u>Tor</u>refaction

Collaborative project: SECTOR

Project start: 01.01.2012

Duration: 42 months

Total budget: 10 MEuro


Participants:
 21 from 9 EU-countries + industrial advisory group

Coordinator: DBFZ (supported by ECN, ofi)

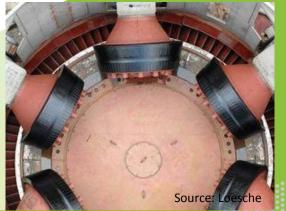
Torrefaction and densification technology roadmap

SECTOR objectives

- Support the market introduction of torrefaction-based bioenergy carriers as a sustainable commodity solid fuel
- Further development of torrefaction-based technologies (up to pilot-plant scale and beyond)
- Development of specific production recipes, validated through extensive lab-toindustrial-scale logistics and end-use performance testing
- Development and standardisation of dedicated analysis and testing methods for assessment of transport, storage, handling logistics and end-use performance
- Assessment of role of torrefaction-based solid bioenergy carriers in the bioenergy value chains and their contribution to development of bioenergy market in Europe
- Full sustainability assessment of four major torrefaction-based biomass-to-end-use value chains
- Dissemination of project results to industry and into international forums (e.g. CEN/ISO, IEA and sustainability round tables)

(Co-)gasification

Handling


Co-firing

Storage

Grinding & feeding

Pellet boiler

Advantages, disadvantages and challenges

Advantages

- Increased feedstock basis
- High energy density of torrefied products
 effective transport
- Reduced water retention force (hydrophobicity)
- Slower biodegradation potential
- Better grindability due to embrittlement
- Decreased costs for handling, storage and transport
- Biomass torrefaction can create new markets and trade flows as a commodity fuel (\$\rightarrow\$ product standards are needed)

Disadvantages / Challenges

- Dust and dirtiness at handling and transport
 - Safety issues must be assessed
 - Self ignition and spontaneous combustion occurs at 150-170°C
- Explosion hazards increase compared to conventional biomass but probably not in comparison with coal
- Compacting (pellets / briquettes) is more difficult
- Additional fuel properties (e.g. degree of torrefaction, grindability, hydrophobic nature, resistance against biodegradation) and sustainability criteria must be defined SISO work

Safety issues

self-heating (chemical oxidation of torrefied wood chips)

Smoke in 24 Minutes

Fire in 32 Minutes

End of production run on Wednesday

Fire on Saturday

SECTOR project structure

Project Management (WP1)

Assessment of relevant biomass feedstock regarding

- Availability now and 2030, incl. price level
- Suitability for torrefaction and end-use
- Demands of the end-users

Optimisation of torrefaction processes regarding the needs of

- Densification
- Logistics
- End-use

Optimisation of densification processes for torrefied biomass

- Pelletisation
- Briquetting

Analysis of fuel properties regarding different possibilities for

- Storage
- Handling
- Transportation

Evaluation of the usability of torrefied biomass for

- Cofiring in coal plants incl. milling and feeding tests
- Gasification
- Small scale combustion
- · Material use

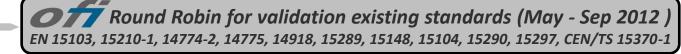
Demonstration Tests (WP5)

Raw Material Supply (WP2) Torrefaction Process (WP3)

Densification Process (WP4)

Logistics (WP6)

End-Use (WP7)


Specification of material properties and analysis methods (WP8) as well as

socio-economics and environmental sustainability analysis of biomass-to-end-use chains (WP9)

Round Robin

		EN 15103	EN 15210-1	EN 14774-2	EN 14775	EN 14918	EN 15289	EN 15148	EN 15104	EN 15290	EN 15297	CEN/TS 15370-1
Participant	Country	bulk density	durability	moisture	ash	calorific value	S & CI	volatiles	CHN	Major	Minor	ash melting
	11	17	15	20	20	19	16	18	16	11	10	10
OFI	Α	1	1	1	1	1	1	1	1	1	1	1
Bioenergy 2020+ GmbH	Α			1	1	1	1	1		1	1	
GDF-Suez	Be			1	1	1	1	1	1			
CRA-W U13	Be	1	1	1	1	1		1				
TFZ	D	1	1	1	1	1						
Danish Technological Institute	DK	1	1	1	1							
Dong Energy, ENV Lab.	DK	1	1	1	1	1	1	1	1	1	1	
CENER-CIEMAT	Es	1	1	1	1	1		1	1			
Ciemat	Es	1	1	1	1	1	1	1	1	1		1
VTT	FI	1		1	1	1	1	1	1			
ECN	NI			1	1	1	1	1	1	1	1	
TLR International Laboratories	NI	1	1	1	1	1	1	1	1	1	1	1
Laboratório Nacional de Energia e Geologia, I.P.	Pt	1	1	1	1	1	1	1	1	1	1	1
Bränselaboratoriet Umeä AB	Se	1	1	1	1	1	1	1	1			1
SP	Se	1	1	1	1	1	1	1	1	1	1	1
	Ge	1	1	1	1	1	1	1	1	1	1	1
Eurofins Environment Sweden AB	Se	1	1	1	1	1	1	1	1	1	1	1
Belab AB	Se	1	1	1	1	1	1	1	1			1
DOOSAN Babcock	Uk	1		1	1	1	1	1	1	1	1	1
TES	Uk	1	1	1	1	1	1	1	1	1	1	1
TP inspection	USA	1	1	1	1	1	1	1	1			

Thank you for your attention!

This presentation was prepared in close co-operation with:

For more information, please contact:

Ir. Robin Zwart

Senior Researcher Bioenergy Biomass & Energy Efficiency

T +31 88 515 45 74 Westerduinweg 3, 1755 LE PETTEN

F +31 6 1089 84 87 P.O. Box 1, 1755 ZG PETTEN

The Netherlands

zwart@ecn.nl www.ecn.nl

