

Evaluation of torrefied bamboo for sustainable bioenergy production

C.M. Daza Montaño J.R. Pels L.E. Fryda R.W.R. Zwart

Presented during the 9th World Bamboo Congress (WBC), 10-15 April 2012, Antwerp / Merksplas – Belgium

ECN-L--12-011 April 2012

Energy research Centre of the Netherlands

Evaluation of torrefied bamboo for sustainable bioenergy production

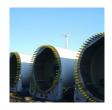
Claudia Daza Montaño, Jan Pels, Lydia Fryda, Robin Zwart

Presentation overview

- ECN Energy research Centre of the Netherlands
- Sustainable bioenergy production from bamboo
 - Partners
 - Possible end-users
 - Possible pre-treatment
- Status
 - Pre-treatment
 - End-use
 - Sustainability
 - Issues
- Conclusions

Energy research Centre of the Netherlands (ECN)

Dedicated to Sustainable Energy Innovation

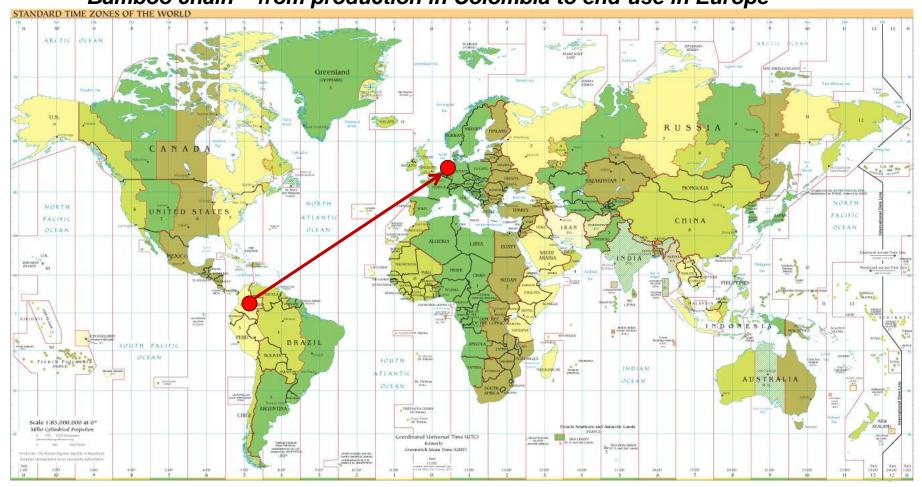

ECN develops and brings to market high-level knowledge and technology for a sustainable energy society

- Sustainable energy technology development
- R&D services to industry
- Feasibility studies, system and technology assessments

ECN

- Largest Dutch energy R&D institute
- Independent
- 570 employees
- R&D units:
 - Biomass
 - Solar energy
 - Wind energy
 - Efficiency & Infrastructure
 - Policy studies

Partners beside ECN


Imperial College London

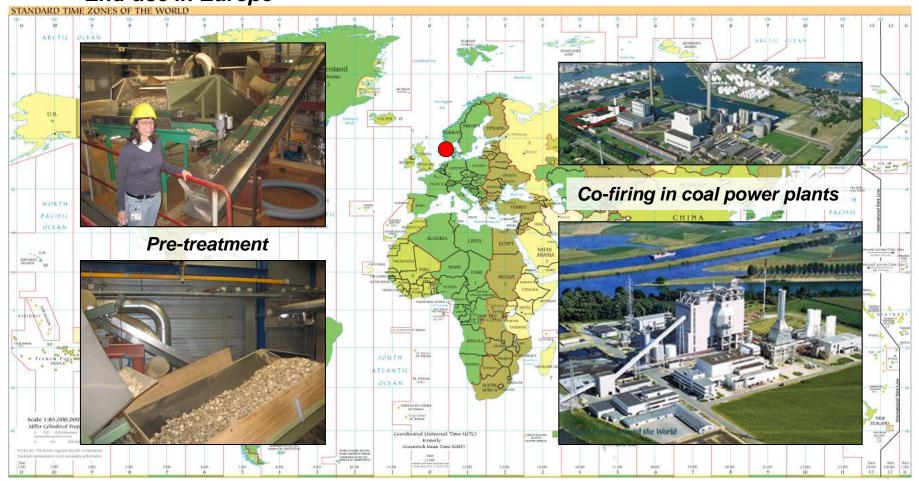
Ximena Londoño (SCB)
Rocio Diaz-Chavez (ICL)
Robin Zwart and Claudia Daza Montaño (ECN)
Juan Carlos Carmargo (UTP)

Bamboo chain – from production in Colombia to end-use in Europe

Sustainable energy production from bamboo *Why bamboo?*

- Fast growing: 26-42 Ton/Ha-year
 - Superior than any other "tree"
 - 20-30 m in 6 months
- Low water consumption
- Excellent reforesting crop
- Regenerates itself after it has been responsibly cared for and harvested

Why Guadua Angustifolia?


- Native specie typical from the Andean region
- Some plantations of "Guadua Angustifolia Kunth" are FSC certified
- Non exploited yet as energy source
- Potential in Colombia:1MTon/year

End-use in Europe

End-use in Europe

Location

Hemweg Power Station Amsterdam

Fuel

Bituminous coal & biomass Unit capacity 660 MW_e combustion plant

Location

Buggenum Power Station Haelen

Fuel

Coal & biomass
Colombian coal & torrefied materials
Unit capacity
250 MW_e gasification plant

From coal to biomass

Woody biomass

Friable and less fibrous

19 - 22 MJ/kg (LHV, ar)

Hydrophobic

Preserved

Homogeneous

Transport, handling, storage

- Milling, feeding
- Gasification, combustion
- Broad feedstock range

Superior fuel properties:

Commodity fuel

Torrefaction and p_{u/verisation}

Fuel powder

P_{elletisation}

Fuel pellets

Tenacious and fibrous

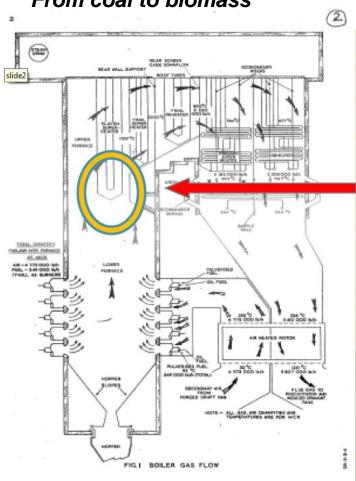
10 - 17 MJ/kg (LHV, ar)

Hydrophilic

Vulnerable to biodegradation

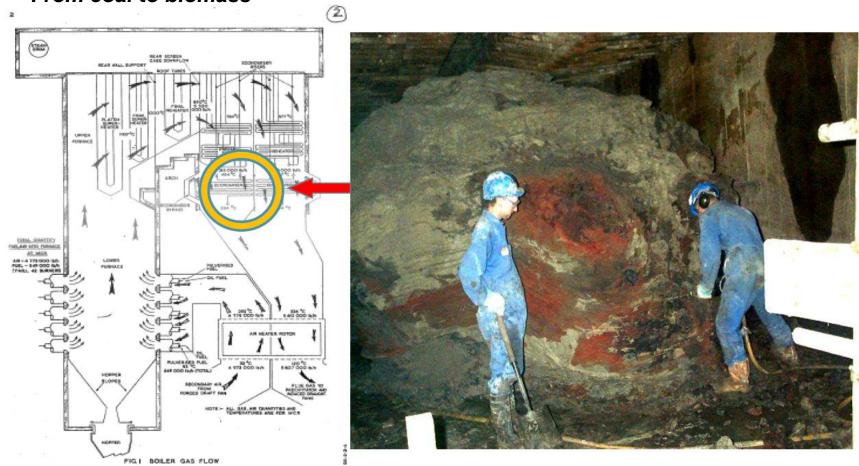
Heterogeneous

Bulk density 650-750 kg/m³ Bulk energy density 13-17 GJ/m³


Mixed waste

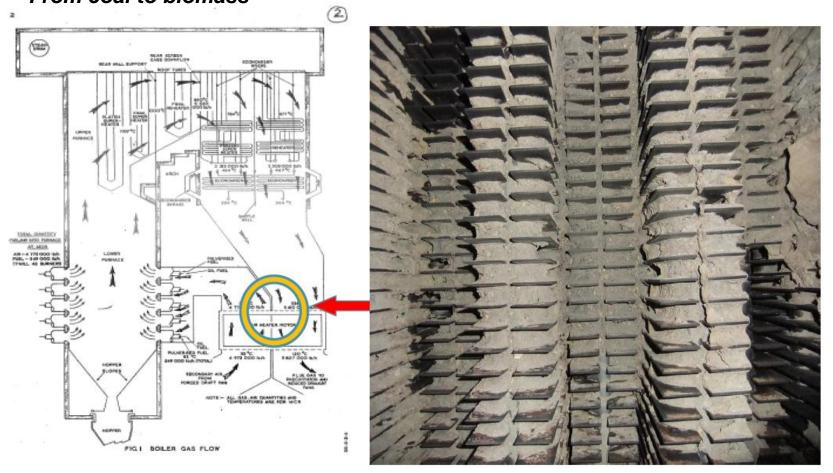
Presented by Drax at Biopower generation / 13-15 March 2012 / Rotterdam

Sustainable energy production from bamboo



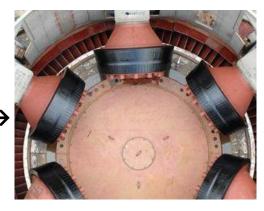
Presented by Drax at Biopower generation / 13-15 March 2012 / Rotterdam

Sustainable energy production from bamboo



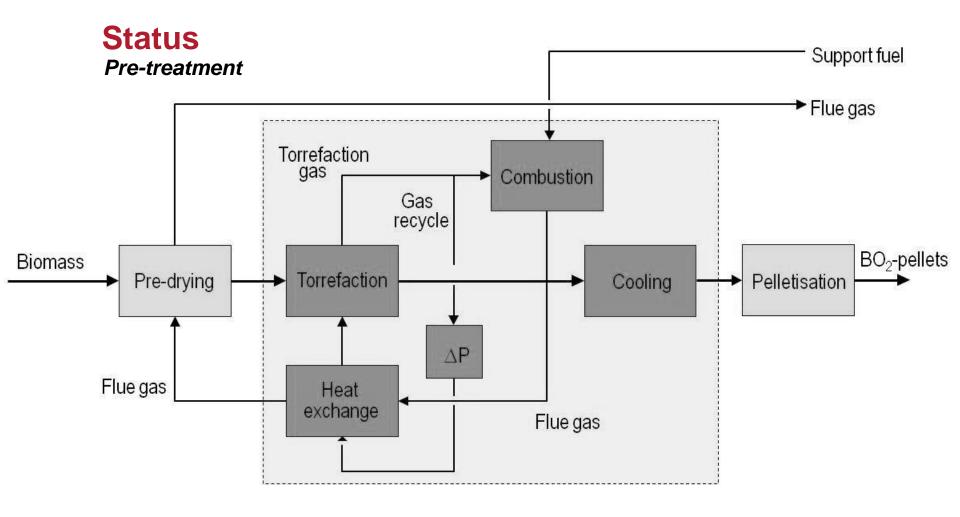
Presented by Drax at Biopower generation / 13-15 March 2012 / Rotterdam

Sustainable energy production from bamboo

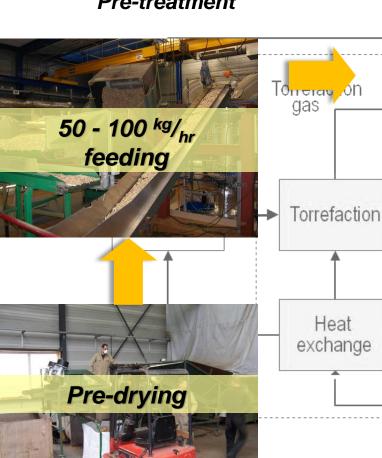


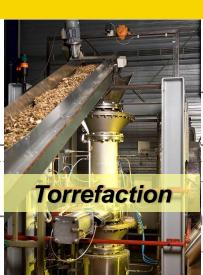
← Shipment

Grinding & Feeding →



← Storage & handling →





Pre-treatment

1 - 10 tonne test batches

Status

Pre-treatment

Presented by Electrabel at Biopower generation / 13-15 March 2012 / Rotterdam

Status

End-use

Status End-use

Special reactor design: 1-2 s residence times with limited total reactor length

Staged gas burner: high heating rate + proper gas atmosphere

Fouling probe

Particle sampling probe

StatusSustainability

Main sustainability themes

- Green house gas emissions
- Competition with food and local applications
- Biodiversity
- Environment
- Prosperity
- Social well-being
- Certification

Status

People

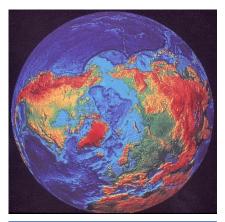
Well being

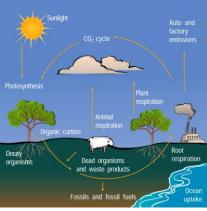
The production of biomass must contribute towards the social well-being of the employees and the local community

Environment

In the production and processing of biomass, quality of soil, surface & ground water and air needs to be preserved, if not improved.

Status


Planet


Biodiversity

Biomass production may never harm protected or vulnerable biodiversity but-wherever possible- needs to strengthen the biodiversity

Greenhouse gases

Considered over the entire chain, the use of biomass needs to result in a sharp reduction in GHG emissions compared to fossil fuels

Status *Profit*

Prosperity

The production of biomass needs to contribute to the local economy

Competition

The production of biomass for energy purposes may not endanger the food supply or other local applications

Status *Issues*

Fuel	Russian Coal	Lignite	Wood	Olive kernel	Cynara cardunculus	Shea meal	Guadua angustifolia
Moisture	10.4	48	7.1	5.78	11	11.13	16.4
Proximate analysis (% mass, dry fuel basis)							
Ash @ 815°C	8	27	1.44	6.29	5.1	5.41	6.3
Volatile matter	32	45	80	72	75	61.9	70
HHV (KJ/kg)	27800	15000	20093	20000	19000		18750
Ultimate analysis (% mass, dry fuel basis)							
С	68	41	50.25	48	42	49.4	47.1
Н	4	2.4	6.13	5.75	5.5	5.35	6.05
N	0.87	1.1	0.37	1.1	0.55	2.61	1
S	0.35	0.67	0.026		0.15		0.125
O by diff.	11.6	31	44.2	38	43	40.05	44
Ash composition (mg/kg fuel, dry basis)							
Na (± 7)	405	775	191	1300	4100	179	111
Mg (± 1)	1277	6850	404	1800	1500	1937	405
AI (± 4)	16583	9000	474	1200	160	772	339
Si (± 90)	34841	20000	1331	6200	650	1861	12143
P (± 15)	386	250	122	620	910	1684	770
K (± 20)	2390	1600	984	8900	12000	20789	23029
Ca (± 20)	2750	110000	1919	13000	12000	2145	344
Ti (± 8)	622	395	96	76	8,6	47	12.5
Mn (± 6)	89	130	66	35	17	24	6.5
Fe (± 4)	6077	9700	301	1800	110	1095	140
Zn (± 1)	21	9.3	25	12	13	3.6	10.7
Pb (± 20)	10	~5	8	25	3,5	1.9	0
Sr (± 5)	183	170	11	15	59	18.3	6.9
Ba (± 5)	260	78	29	11	26	22.4	8
S	3500	6700	260	860	1500	2704	1284
CI (± 20)	100	76	253	2000	2800	797	568

Status *Issues*

Fuel	Russian Coal	Wood	Guadua angustifolia		
Moisture	10.4	7.1	16.4		
Proximate analysis (% mass, dry fuel basis)					
Ash @ 815°C	8	1.44	6.3		
Volatile matter	32	80	70		
HHV (KJ/kg)	27800	20093	18750		
Ultimate analysis (% mass, dry fuel basis)					
С	68	50.25	47.1		
Н	4	6.13	6.05		
N	0.87	0.37	1		
S	0.35	0.026	0.125		
O by diff.	11.6	44.2	44		

Status *Issues*

Fuel	Russian Coal	Wood	Guadua angustifolia			
Moisture	10.4	7.1	16.4			
Ash composition (mg/kg fuel, dry basis)						
Na (± 7)	405	191	111			
AI (± 4)	16583	474	339			
Si (± 90)	34841	1331	12143			
K (± 20)	2390	984	23029			
Ca (± 20)	2750	1919	344			
Fe (± 4)	6077	301	140			
S	3500	260	1284			
CI (± 20)	100	253	568			

Status

Issues

TORWASH

Combining torrefaction with a washing step in order to recover certain minerals from biomass in order to use it as a non-fossil fertiliser.

Proximate &ultimate (% mass, dry fuel)					
	Raw	Torwashed			
		(wet torrefaction)			
ash @ 815°C	6,3	4,5			
Ash composition (mg/kg fuel, dry fuel)					
K	23029	510			
CI	568	120			

Conclusions

- Guadua angustifolia is a potential solid fuel due to its elemental composition and high heating capacity.
- Properties are similar to those of clean wood rather than other herbaceous feedstocks, except for alkali content.
- Initial implementation most likely via initially utilization of residues rather than dedicated energy crops production.
- With wet torrefaction it is possible to eliminate the alkali characteristics that may prevent bamboo from being co-fired.

Thank you for your attention!

For more information, please contact:

Robin Zwart

Phone +31 224 56 4574

e-mail zwart@ecn.nl

Internet www.ecn.nl

Production of tonne-scale test batches at ECN for industrial trials

