

The role biomass can play in 2020 & 2030 Deviations and consistency with NREAPs

Joost van Stralen & Ayla Uslu (ECN)

'Final workshop Biomass Futures' March 20th 2012, Brussels

Contents

- Introduction
- RESolve models
- Scenario description
- Conclusions/main results
- Results Reference scenario
- Results (Global) Sustainability
- Recommendations

Introduction

- Model based analysis
- Focus on NREAPs
- Models used: RESolve models
- Biomass domestic cost supply: WP3 (see presentation at 16:30)
- Biomass imports: WP3 (see presentation at 16:30)
- GHG parameters: WP4
- Several scenarios have been analyzed

RESolve models

- General: RES only; up to 2030; on a yearly basis; EU27 (country level)
- **RESolve-E:** RES-E + heat from CHP; simulation (projection); policies important
- **RESolve-H:** RES-H; simulation (projection)
- RESolve-biomass: biofuels + RES-E and –H from biomass; optimization

RESolve: linkage between models

Biomass allocation: RESolve-biomass

June 2009- December 2011- EIE/08/653 20/03/2011

RESolve: linkage between models

Biomass allocation in RESolve-biomass

Find the minimal additional cost allocations along the bio-energy supply chain in the EU, given projections of demand, potentials and technological progress

Biomass allocation in RESolve-biomass

Find the minimal additional cost allocations along the bio-energy supply chain in the EU, given projections of demand, potentials and technological progress with respect to reference commodities

Find the minimal additional cost allocations along the bio-energy supply chain in the EU, given projections of demand, potentials and technological progress with respect to reference commodities

biofuel target, bio-electricity and -heat

RESolve-biomass model: how does it work?

GHG constraints included

RESolve-biomass: demand segements

Biofuels	Biofuel target
	Solid biomass
RES-E	Bioliquids
	Biogas
	Solid biomass
RES-H	Bioliquids
	Biogas

June 2009- December 2011- EIE/08/653 20/03/2011 E

RESolve-H model: characteristics

The model focusses on the heat demand sectors:

 Residential sector: space heating, water heating
 Tertiary sector: services
 Industry: 14 subsectors, consisting of various industrial activities

Scenario assumptions

- (Bio)energy demand: NREAPs for 2020 + extrapolated using PRIMES Reference growth rates to 2030
- Policy instruments: continuation of current type of incentive schemes
- Biofuel double counting: until 2020
- Scenarios differ in the sustainability criteria applied
- Reference : Using RED. Only for biofuels, reaches 60%
 GHG mitigation in 2030
- **Sustainability:** For all domestic biomass. 70% GHG mitigation in 2020, 80% in 2030
- Global Sustainability: same as Sustainability, but iLUC is applied to biofuel imports from outside EU

Conclusions/main results (1)

- There is enough potential, especially solid biomass, however, a part is not so attractive: round wood and part of agri. residues.
- Stricter sustainability criteria and expansion to electricity and heat has the following consequences:
 - Decrease of domestic biofuel production
 - Increased imports (biofuel and wood pellets)
 - Urgency for 2G biofuel technologies
 - Significant reduction in application of digestable and liquid biomass for RES-E and RES-H applications
- Several countries won't meet the NREAP figures for bio RES-E and RES-H. Main reasons: growth rates seem to ambitious and incentives are too low/cost-benefit ratio not attractive enough

Conclusions/main results (2)

- Electricity sector: After 2025 a decline in bioelectricity production is seen. Main reasons: decline of cheap potential and competition with other RES-E options
- Heat sector: Importance of residential sector may decline, while industry sector may increase
- Biofuels: 2G technologies will play an important role in 2030, but depends a lot on 1G imports
- Role of CHP will increase

Reference scenario: results for RES-E from RESolve-E

Reference scenario: results RES-E

Reference scenario: results RES-E 2020

R 0

What causes RES-E deficits* in 2020?

Country	[%]	Туре	Support /price	Ambitions /growth
BG	≥ 75%	S,G		
СҮ	≥ 25%	G		
CZ	≥ 25%	G		
EL	≥ 25%	G		
FR	≥ 25%	S,G		
IE	≥ 25%	S		
т	≥ 25%	G,L		
LT	≥15%	S		
LU	≥ 25%	S,G		
LV	≥ 50%	S,G		
MT	≥ 75%	S,G		
РТ	≥ 25%	L		
RO	≥ 25%	S,G		
SK	≥15%	G		
		TUDEO	June 2009- Decemb	er 2011- EIE/08/653

20/03/2011

Ы

I&MA22 |

S: solid G: digestable L: liquid

Support levels/prices

NREAP ambitions/growth/ barriers

*deficit > 15%

Reference scenario: results RES-E 2030

R

Biomass penetration in heat sector

	2010		2020	2020		2030	
	Mtoe	Share	Mtoe	Share	Mtoe	Share	
Residential	24.9	47%	16.8	22%	11.2	15%	
Tertiary	7.6	14%	19.2	25%	21.9	28%	
Industry	14.6	28%	28.9	38%	30.5	40%	
СНР	5.8	11%	11.1	15%	13.4	17%	
Total	53.0	100%	76.0	100%	76.9	100%	

- •Use of biomass in heat sector is expected to grow
- •CHP will become more important for supplying heat
- Importance of residential sector may decline while industry sector may increase
- •Opportunities exist in tertiary sector
- •Solid biomass expected to remain most important energy carrier

Heat: comparison to NREAP

	RESolve-H	NREAP	
	[Mtoe]	[Mtoe]	Difference
PL	4.1	4.6	-11%
IT	4.6	5.3	-13%
DE	7.4	9.0	-17%
RO	3.1	3.8	-19%
DK	1.9	2.5	-24%
LU	0.0	0.1	-40%
BE	1.1	1.9	-42%
EL	0.6	1.2	-52%
LV	0.5	1.3	-66%
EE	0.2	0.6	-66%
IE	0.1	0.5	-74%
LT	0.2	1.0	-76%

• RESolve-H penetration in REF comparable to NREAP, average REF EU27 6% lower than NREAP

• Some countries may experience lower penetrations compared to NREAP 2020, mainly because of cost/benefit ratio: Belgium, Germany, Denmark, Italy, Luxembourg, Malta, Poland

June 2009- December 2011- EIE/08/653 20/03/2011

Biofuel consumption in the Reference scenario

Biofuels in 2020

Biofuel consumption in the Reference scenario Biofuels in 2030

Reference scenario: Feedstock potentials vs use

Reference scenario: Feedstock potentials vs use

Applying sustainability criteria to RES-E

Effect of sustainability on biofuel consumption

Biofuels in 2020

Effect of sustainability on biofuel consumption Biofuels in 2030

Effect sustainability on imports

EURO

Effect sustainability on imports

EURO

Conclusions/main results (1)

- There is enough potential, especially solid biomass, however, a part is not so attractive: round wood and part of agri. residues.
- Stricter sustainability criteria and expansion to electricity and heat has the following consequences:
 - Decrease of domestic biofuel production
 - Increased imports (biofuel and wood pellets)
 - Urgency for 2G biofuel technologies
 - Significant reduction in application of digestable and liquid biomass for RES-E and RES-H applications
- Several countries won't meet the NREAP figures for bio RES-E and RES-H. Main reasons: growth rates seem to ambitious and incentives are too low/cost-benefit ratio not attractive enough

Conclusions/main results (2)

- Electricity sector: After 2025 a decline in bioelectricity production is seen. Main reasons: decline of cheap potential and competition with other RES-E options
- Heat sector: Importance of residential sector may decline, while industry sector may increase
- Biofuels: 2G technologies will play an important role in 2030, but depends a lot on 1G imports
- Role of CHP will increase

Questions?

