

# Salt hydrates as TCM for seasonal heat storage

C.J. Ferchaud H.A. Zondag C.C.M. Rindt<sup>1</sup> M. Bakker

<sup>1</sup>TU Eindhoven

This paper was presented at Eurotherm Seminar 93, Bordeaux, France, 16-18 November 2011

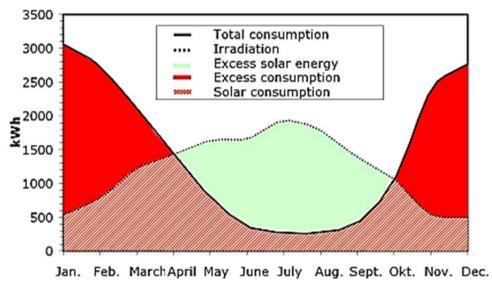
ECN-L--11-125 DECEMBER 2011







**Energy research Centre of the Netherlands** 


#### Salt hydrates as TCM for seasonal heat storage

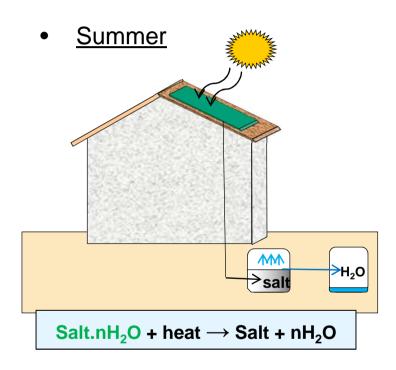
C.J. Ferchaud, H.A. Zondag, C.C.M Rindt and M. Bakker





#### Salt hydrates for seasonal heat storage

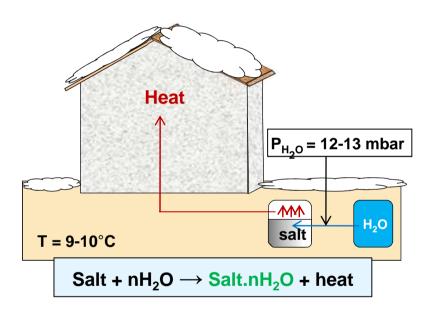



- In the Netherlands: 65 % of the domestic energy consumption (primary energy) is used for space heating and DHW
- Sustainable energy for build environment
   → solar energy
- Passive house of 110 m<sup>2</sup> with low energy standard → 6 GJ
  - Water storage density = 0.25 GJ/m<sup>3</sup>  $(\Delta T=60^{\circ}C) \rightarrow water tank > 30-40 m<sup>3</sup>$



Heat storage with a compact bed of <u>crystalline salt hydrates</u> High energy density, low cost and eco-friendly materials




#### Practical conditions for the heat storage



Dehydration @ T < 150°C with

 $P_{H_2O}$  = 13 mbar (average seasonal conditions)

#### Winter

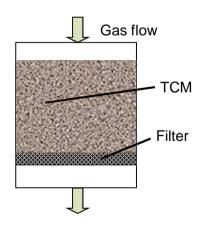


Hydration @ ambient temperature

with 
$$P_{H_2O} = 13 \text{ mbar}$$
 (borehole)

→ Released T > 60°C (space heating & DHW)

17-11-2011




#### **Actual status at ECN**

Screening of materials → selection of two materials

| Materials                                     | MgSO <sub>4</sub> ·7H <sub>2</sub> O | MgCl <sub>2</sub> -6H <sub>2</sub> O | - |
|-----------------------------------------------|--------------------------------------|--------------------------------------|---|
| Dehydration @ 150°C<br>Hydration @ 13 mbar    | 7 → 1<br>1 → 6                       | 6 → 2<br>2 → 6                       |   |
| Theoretical bed energy density (50% porosity) | 1.10 GJ/m <sup>3</sup>               | 0.97 GJ/m³                           |   |

Final heat storage system: compact bed of 6 m<sup>3</sup>



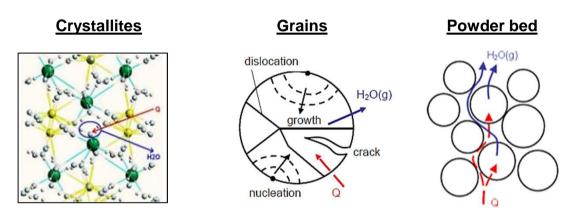
Actual lab tests performed at ECN are performed on a reactor of 20L





#### **Actual status at ECN**

Experimental results of the selected TCM :


| Materials                                  | MgSO <sub>4</sub> ·7H <sub>2</sub> O | MgCl <sub>2</sub> ⋅6H <sub>2</sub> O |
|--------------------------------------------|--------------------------------------|--------------------------------------|
| Dehydration @ 150°C<br>Hydration @ 13 mbar | 7 → 1<br>1 → 2                       | 6 → 2<br>2 → 6 + overhydration       |
| Experimental energy density (50% porosity) | 0.4 GJ/m³                            | ≈ 1 GJ/m³                            |
| Release of heat                            | $\Delta T = + 6^{\circ}C$            | $\Delta T = + 60^{\circ}C$           |

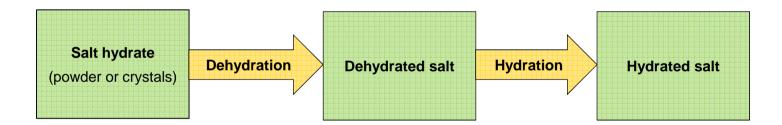


A fundamental understanding of the water vapor sorption process is required to improve these materials



#### **Objectives of the project**




- Characterization of the water vapor sorption process in crystalline salt hydrates under practical conditions :
  - Identification of the reactions of deh./hyd. and definition of their kinetics of reactions
  - Identification of the changes of <u>structure</u>, <u>composition</u> & <u>texture</u> of the material
  - Identification of the <u>heat</u> and <u>water vapor flow</u>
- Improvement of the TCM materials for long term application by means of composite materials or matrix carrier and development at the level of the 6 m<sup>3</sup> reactor

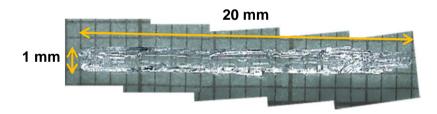


#### Methodology of research

References: studies of the water vapor sorption on Li2SO4·H2O and CuSO4·5H2O

Selection of characterization techniques and establishment of experimental protocol

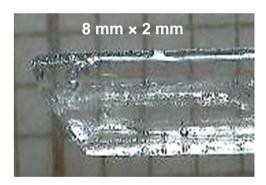



- Identification of the kinetics & reactions enthalpies by <u>Thermal analyses (TGA-DSC)</u>
- Investigations of structure and compositions changes of the material by <u>in-situ X-ray diffraction</u>
- Identification of the textural change of the material by <u>microscopic observations</u> on monocrystals



#### **Preparation of the materials**

- Sieving of commercial powder at different PSD → selection of 100-200 μm
- Synthesis of monocrystals by slow evaporation of saturated solution

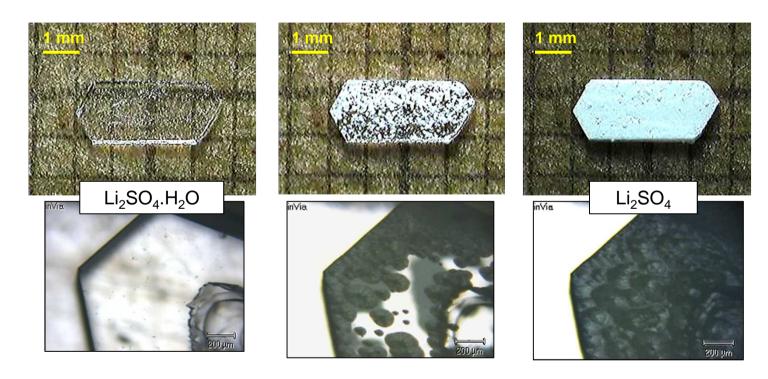

 $\underline{\mathsf{MgSO}_4} \cdot \underline{\mathsf{7H}_2} \underline{\mathsf{O}}$ 



Crystal size too small for a good material characterization

→ New experiments in progress

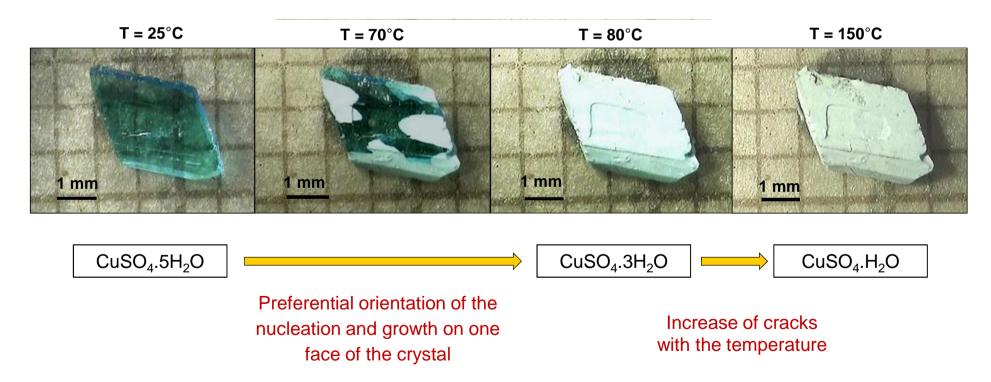
 $\underline{\mathsf{MgCl}_2} \cdot \underline{\mathsf{6H}_2} \underline{\mathsf{O}}$ 




→ Investigation of the water vapor sorption process on monocrystal in progress



# Investigations on reference materials crystals

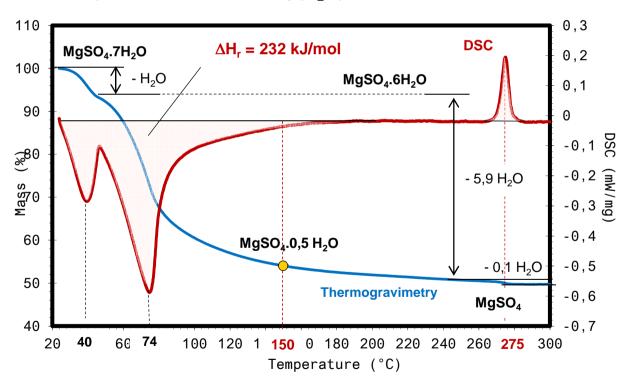

- Textural observations on <u>Li<sub>2</sub>SO<sub>4</sub>·H<sub>2</sub>O</u> monocrystal
  - → homogeneous nucleation and growth processes





#### Investigations on reference materials crystals

- Textural observations on <u>CuSO<sub>4</sub>·5H<sub>2</sub>O</u> monocrystal
  - → preferential orientation of the nucleation and growth processes






#### Study of MgSO<sub>4</sub>-7H<sub>2</sub>O powder

Thermal analysis of the <u>dehydration of MgSO₄·7H₂O</u>

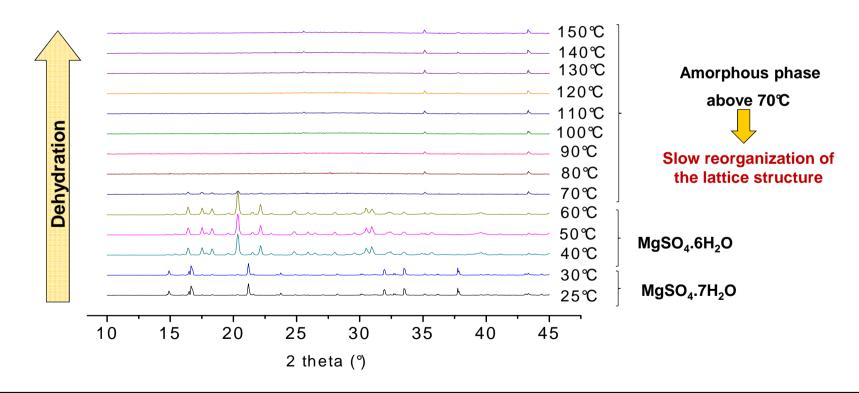
Experimental conditions:  $p(H_2O) = 13 \text{ mbar}$ ,  $\Delta T = 30 - 300 \degree$ , heating rate =  $1 \degree$ /min



NBS tables:  $7 \rightarrow 1$  $\Delta H_r = 336 \text{ kJ/mol}$ 



Phase transition not independent

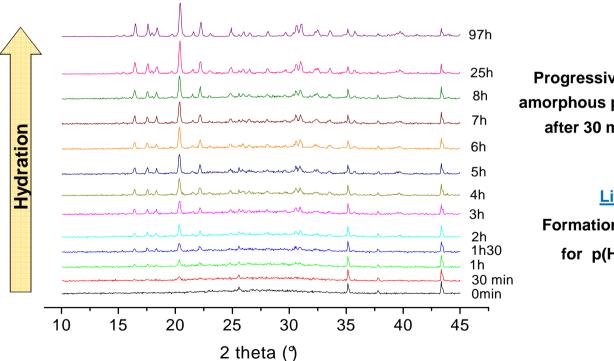

Heating rate too fast Control of the p(H<sub>2</sub>O) uncertain



## Study of MgSO<sub>4</sub>-7H<sub>2</sub>O powder

XRD analyses of the <u>dehydration of MgSO<sub>4</sub>.7H<sub>2</sub>O</u>

Experimental conditions:  $p(H_2O) = 13 \text{ mbar}$ ,  $\Delta T = 25 - 150 \text{ C}$ , heating rate = 1 \text{ C/min}






#### Study of MgSO<sub>4</sub>-7H<sub>2</sub>O powder

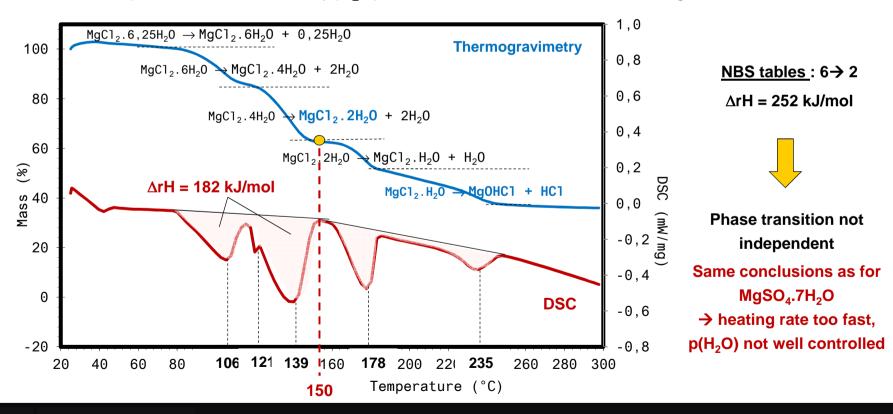
XRD analyses of the <u>hydration of dehydrated MgSO<sub>4</sub>·7H<sub>2</sub>O</u>

Experimental conditions:  $p(H_2O) = 13 \text{ mbar}$ ,  $\Delta T = 150-25$ °C, cooling rate = 1°C/min + isotherm @ 25°C for 97h



Progressive rehydration of the amorphous phase @ 25℃ starting after 30 min → MgSO<sub>4</sub>.6H<sub>2</sub>O

#### Literature:


Formation of MgSO<sub>4</sub>·7H<sub>2</sub>O for  $p(H_2O) > 60 \text{ mbar}$ 

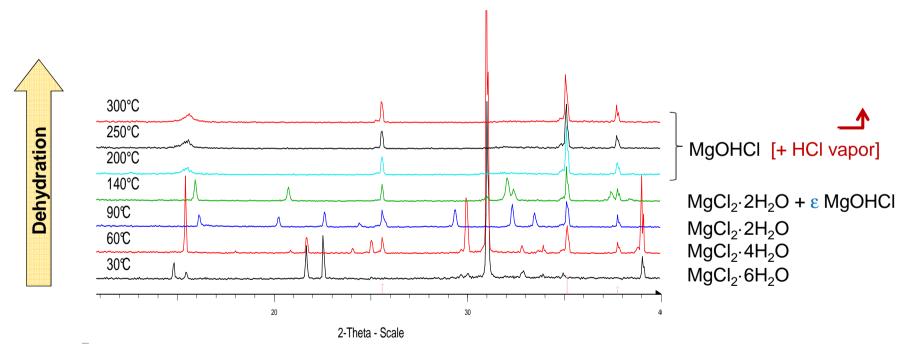


#### Study of MgCl<sub>2</sub>·6H<sub>2</sub>O powder

Thermal analysis of the <u>dehydration of MgCl<sub>2</sub>·6H<sub>2</sub>O</u>

Experimental conditions:  $p(H_2O) = 13 \text{ mbar}$ ,  $\Delta T = 30 - 300 \degree$ , heating rate =  $1 \degree$ /min




17-11-2011

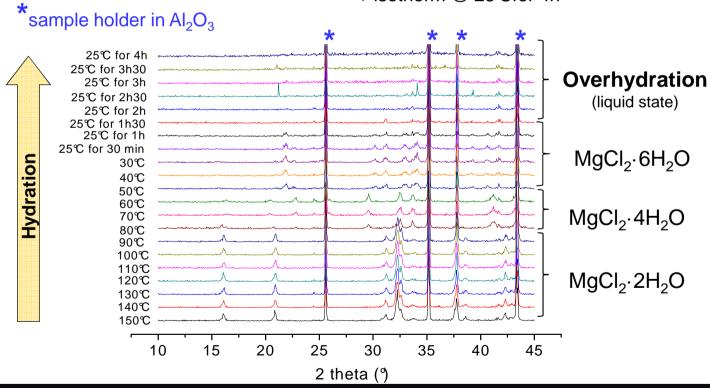


## Study of MgCl<sub>2</sub>·6H<sub>2</sub>O powder

XRD analyses of the <u>dehydration of MgCl<sub>2</sub>·6H<sub>2</sub>O</u>

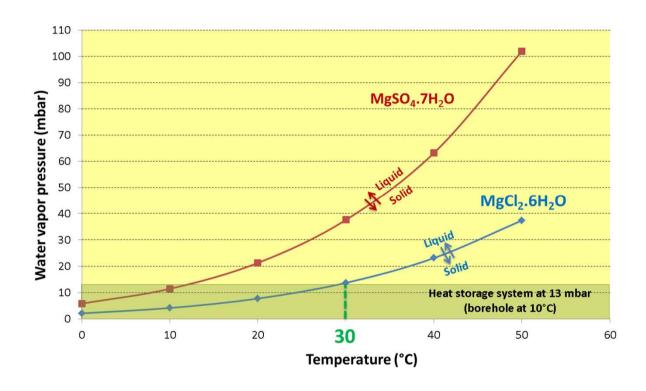
Experimental conditions:  $p(H_2O) = 13 \text{ mbar}$ ,  $\Delta T = 30 - 300 \circ C$ , heating rate =  $1 \circ C/min$ 




Limitation of dehydration process @ 130°C



#### Study of MgCl<sub>2</sub>·6H<sub>2</sub>O powder


XRD analyses of the <u>hydration of MgCl<sub>2</sub>·6H<sub>2</sub>O dehydrated @ 150°C</u>

Experimental conditions:  $p(H_2O) = 13 \text{ mbar}$ ,  $\Delta T = 150 - 25 \text{ } \text{C}$ , cooling rate = 1 C/min + isotherm @ 25 C for 4h





# Study of MgCl<sub>2</sub>.6H<sub>2</sub>O powder



At 13 mbar, MgCl<sub>2</sub>.6H<sub>2</sub>O stable for a temperature above 30°C



#### **Conclusions**

Summary of the results obtained on TCM

| Materials                            | Dehydration @ 150 ℃ / 13 mbar                                                                                | Hydration @ 25 ℃ / 13 mbar                                                                                             |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| MgSO <sub>4</sub> .7H <sub>2</sub> O | Formation of an <u>amorphous phase</u> with the composition MgSO <sub>4</sub> ·0.5H <sub>2</sub> O           | Slow rehydration starting after 30 min to form MgSO <sub>4</sub> ·6H <sub>2</sub> O phase, total rehydration after 97h |
| MgCl <sub>2</sub> .6H <sub>2</sub> O | Temperature max 130℃ to limit the formation of HCl vapor → formation of MgCl <sub>2</sub> ·2H <sub>2</sub> O | Faster hydration than sulfates Rehydration should take place with a temperature above 30℃                              |

- Kinetic study: Enthalpy values lower than the theoretical values and the phase transitions are not independent
  - → Heating rate too fast, control of the p(H<sub>2</sub>O) is uncertain



#### **Perspectives**

- Reproduction of the thermal analyses under better controlled p(H<sub>2</sub>O) and lower heating rate
- Perform similar characterizations on TCM storage materials as the ones made on the reference materials (Li/Cu hydrates)
- Improving the TCM storage materials by using composite materials or add carrier materials
- Development of TCM storage materials at the level of the 6 m<sup>3</sup> reactor



# Thanks for your attention!





