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Background

Structured reactors and energy saving
In the Netherlands, Chemical & Refi ning Industry uses 40% of the total primary  •
energy consumption with partial oxidation processes as large energy consumers. 
Structured reactors with Taylor fl ow (TF) (Fig. 2) have improved heat and mass  •
transfer, enabling high selectivity and conversion
Energy savings is possible because of decreasing of energy consumption  •
down stream 

Objective

Development of a CFD model for  describing Taylor fl ow in milli channels •
Determining sensitivity of process parameters •
Experimental verifi cation of the kinetic model  •

Modeling Approach

Two-phase fl ow in millimeter-sized channels has been simulated using computa-
tional fl uid dynamics (CFD) codes with the volume of fl uid method (VOF method).
Open-FOAM (Open Field Operation and Manipulation) was selected as the simu-
lation tool for the modeling of two-phase fl ows in small channels. 
The solver for problems involving VOF is  inter-Foam 

Conclusions

 Model predictions in agreement with experimental work on fl ow pattern  •
 mapping and theoretical predictions of channel diameter infl uence.

Future work

Sensitivity analysis of channel design parameters using the developed CFD model 

CFD geometric model of Y-mixer and TF channel 

The domain is characterized by:
 Y-junction has 120˚ between the legs, •
 Channel diameter is 1.5 mm, •
 Inlet legs are 10 mm long, •
 Channel is 50 mm long, •
 Y-junction has rounded edges. •

System defi nation
 Water air system •
 Blue  •  water
 Grey  •  airFigure 4: Defi nition of contact angle and slug length

Figure 3: Example of defi ning mesh  
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Figure 2: Taylor fl ow

Figure 1: Energy usage in process industry

Shape: Hexahedral (A) vs tertahedral (B) vs polyhedral (C) (Fig. 5) •
Size: 0.1, 0.05 and  0.001  mm   •
 9 Polyhedral mesh best fi t geometry
 9 0.1  mm no fi lm formation  reasonable simulation time (Fig. 6A)
 9 0.001 mm always fi lm formation  extremely long simulation time (Fig. 6B)
 9 No difference in slug lengths between  0.1 and 0.001 mm mesh 

Figure 6: Development of fi lm formation with 0.1 (A), 0.01(B) mm mesh size
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Figure 5: Defi nition of mesh

Results

Table1: Parameter infl uence (tertahedral mesh 0.1 mm)

Figure 7: Modeling and experimental verifi cation 120 ,̊ channel size 1.5 mm 

Figure 8: Infl uence of channel diameter
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Variable Stability region Slug length Film 
present

Mesh size None < 0.2 mm VL↑ mesh↓

∆p Shrinkage VG↓ none none

σ ↑ with  σ↑ ↑ with  σ↑ ---

θ --- ↑  with θ↑ ---
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0.450 1.5 mm 1.54 1.28

3 mm bubble instable
6 mm Taylor instable
12 mm stratified

0.375 1.5 mm
3 mm bubble instable
6 mm
12 mm

0.300 1.5 mm 1.78 1.33 3.00 1.45 Taylor instable Taylor instable
3 mm 1.98 2.94 bubble instable bubble instable Taylor instable Taylor instable Taylor instable
6 mm bubble instable Taylor instable Taylor instable connected slug connected slug
12 mm stratified stratified stratified

0.225 1.5 mm
3 mm 2.83 4.40 3.47 2.83 4.77 3.00 5.78 2.69 Taylor instable
6 mm 4.13 5.80 Taylor instable Taylor instable
12 mm

0.150 1.5 mm 2.38 3.58 3.00 2.18 3.14 1.44
3 mm 4.86 7.55 4.43 2.77 6.52 2.84 9.10 3.31 11.47 3.07 Taylor instable
6 mm 7.20 8.33 9.66 5.67 Taylor instable
12 mm

0.075 1.5 mm 3.37 2.58 4.83 1.94 4.86 1.18
3 mm 6.70 4.95 8.86 3.25 12.80 3.13 18.90 3.60 23.33 3.40 25.20 3.20 Taylor instable
6 mm 18.56 15.60 22.40 7.07 Taylor instable
12 mm
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