

The Impact of Large-scale Renewable Integration on Europe's Energy Corridors (2030 – 2050)

Jeroen de Joode (ECN)

Other contributors: Gianluigi Migliavacca, Alessandro Zani, Andrea Grassi, Angelo l'Abbate (RSE),
Karina Veum, Ozge Ozdemir, Adriaan van der Welle (ECN)

34th IAEE international Conference Stockholm, 20th June 2011

Outline

- 1. Introduction & focus
- 2. Approach
- 3. Results
- 4. Conclusions
- 5. Recommendations

1. Introduction & focus

- Increasing deployment of low carbon energy producing technologies
- Affects markets and infrastructure requirements
- Integral assessment of electricity and gas markets
- SUSPLAN project
 - Development of regional and pan-European guidelines for more efficient integration of renewable energy into future infrastructures
- Focus presentation:
 - What are infrastructure developments in different futures?
 - What is the impact of increasing RES on the energy system?

2. Approach

Model-based

- Simulation model representing European electricity market and transmission infrastructure (MTSIM model RSE)
- Simulation model representing European gas market and gas infrastructure (transmission, LNG, storage) (Gastale model ECN)
- Economic optimization
- Interactive analysis
 - Iterations between the two models, both allowing for optimal usage of existing capacity and expansion of capacity
- Long-term perspective
 - Starting point 2030, analysis for 2030 2050
- Storyline-based

20-06-2011

See next slide

2. Approach Introduction to SUSPLAN Storylines

Positive public attitude

High environmental focus in population and business.

Reduced energy consumption and demand
for environmentally friendly products

Positive future for high RES integration, but too low technology development rate. Mainly decentralized development

Positive future for high RES integration. Both market pull and technology push existing.

Slow tech development

No major technology break-throughs; gradual development of current technologies Yellow

Green

Fast tech development

Major break-throughs several technologies, RES, grids, demand side

Red

Difficult future for high RES integration. Few new technologies are available, and low interest to invest.

Mainly centralized development with traditional technologies

Blue

New technologies are available, but low interest to invest and use. Mainly centralized development, but with new technologies.

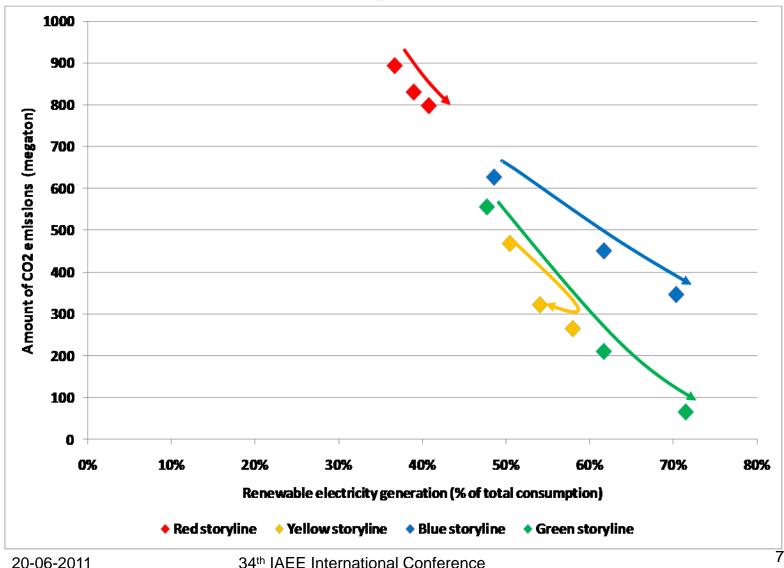
Indifferent public attitude

Low environmental focus in population and business.

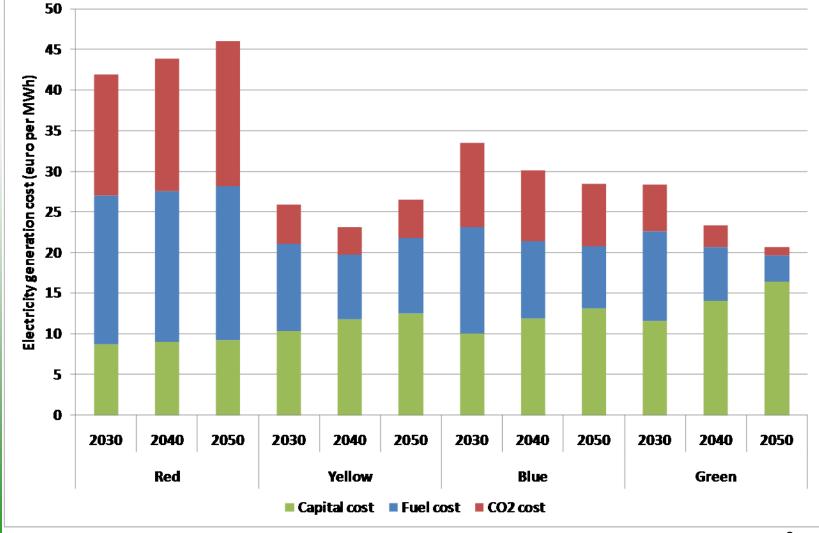
Higher energy consumption and no demand
for environmentally friendly products or services

20-06-2011

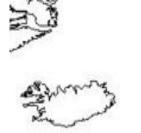
3. Results

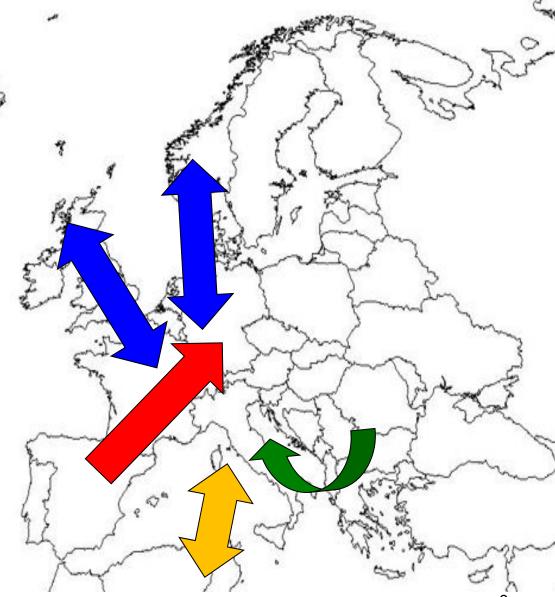


Reduction in CO₂ emissions across storylines



Electricity generation cost Contrast between capital & operational cost impact

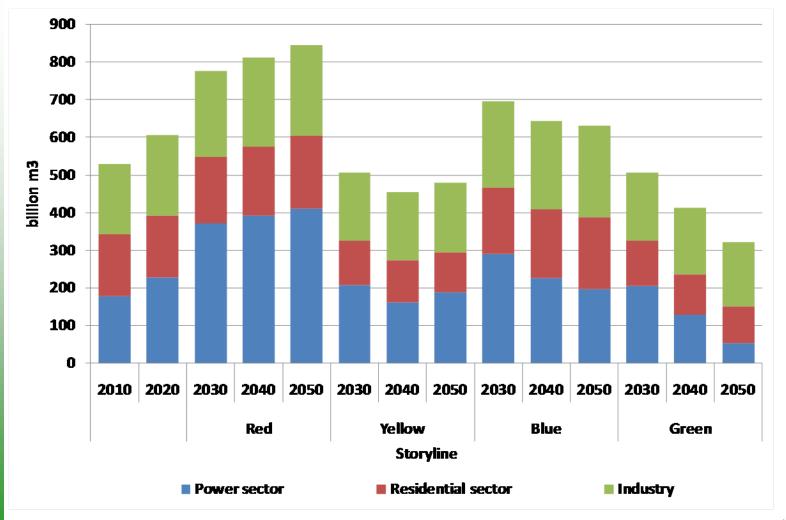




Electricity corridors

Robust corridors across storylines:

- DC corridors connecting Northern Europe and UK with Central Europe
- AC corridors connecting Central Europe with Iberian Peninsula
- DC/AC corridors in Eastern and South-Eastern Europe
- DC corridor from North-Africa to Southern Europe



Total gas consumption Power sector is main driver across storylines

ECN

Change in gas demand 2010 - 2050

(billion m3)

-69 to -50

-49 to -30

-29 to -10

-9 to 10

_ - .. --

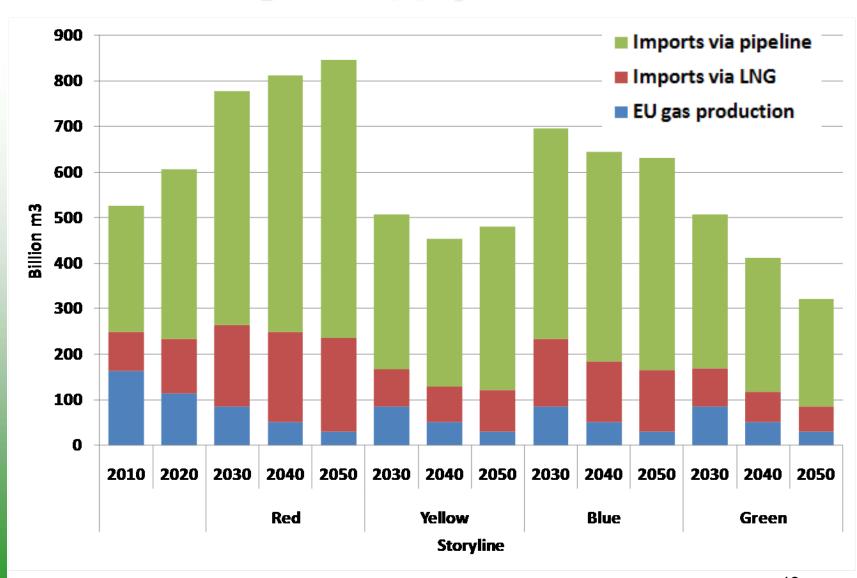
11 to 30

31 to 50

51 to 70

71 to 90

20-06-2011


Results

EU gas supply sources

3. Results

Main observations on gas corridors and hubs

- Turkey Southeastern Europe strong corridor in all storylines
 - Including downstream expansions in region
- Depletion of gas reserves in the UK and the Netherlands
 - Limited infra expansion in Northwestern Europe
- Most important storyline differences occur in South and Southwestern Europe
 - Pipeline imports North Africa Spain / Italy
 - LNG imports in Italy & Spain
 - Italy as gas hub in high demand storylines, triggering pipeline expansion downstream (region)

20-06-2011

Summary across storylines

Yellow				
		2030	2040	2050
Electricity consumption	PWh	4.2	4.2	4.2
Renewable electricity generation	PWh	2.1	2.4	2.3
	%	50%	58%	54%
Gas consumption	Billion m3	507	455	480
Gas imports	Billion m3	422	403	449
Electricity infrastructure expansion	GW		55	22
Gas pipeline expansion	Billion m3	142	35	41
CO2 emissions electricity sector	Megaton	468	264	321

Red				
		2030	2040	2050
Electricity consumption	PWh	4.8	5.1	5.3
Renewable electricity generation	PWh	1.8	2.0	2.2
	%	37%	39%	41%
Gas consumption	Billion m3	777	812	846
Gas imports	Billion m3	692	761	815
Electricity infrastructure expansion	GW		36	20
Gas pipeline expansion	Billion m3	250	93	125
CO2 emissions electricity sector	Megaton	893	830	798

Green				
		2030	2040	2050
Electricity consumption	PWh	4.2	4.2	4.2
Renewable electricity generation	PWh	2.0	2.6	3.0
	%	48%	62%	71%
Gas consumption	Billion m3	507	412	321
Gas imports	Billion m3	422	361	291
Electricity infrastructure expansion	GW		72	65
Gas pipeline expansion	Billion m3	143	28	34
CO2 emissions electricity sector	Megaton	556	210	66

Blue				
		2030	2040	2050
Electricity consumption	PWh	4.9	5.1	5.4
Renewable electricity generation	PWh	2.4	3.2	3.8
	%	49%	62%	70%
Gas consumption	Billion m3	696	644	631
Gas imports	Billion m3	611	593	601
Electricity infrastructure expansion	GW		56	56
Gas pipeline expansion	Billion m3	271	50	48
CO2 emissions electricity sector	Megaton	627	451	347

Summary across storylines Electricity vs. gas infrastructure impact

Yellow			Green							
		2030	2040	2050			2030	2040	2050	
Electricity consumption	PWh	4.2	4.2	4.2	Electricity consumption	PWh	4.2	4.2	4.2	
Renewable electricity generation	PWh	2.1	2.4	2.3	Renewable electricity generation	PWh	2.0	2.6	3.0	
	%	50%	58%	54%		%	48%	62%	71%	
Gas consumption	Billion m3	507	455	480	Gas consumption	Billion m3	507	412	321	
Gas imports	Billion m3	422	403	449	Gas imports	Billion m3	422	361	201	
Electricity infrastructure expansion	GW		55	22	Electricity infrastructure expansion	GW		72	65	
Gas pipeline expansion	Billion m3	142	35	41	Gas pipeline expansion	Billion m3	143	28	34	
CO2 emissions electricity sector	Megaton	468	264	321	CO2 emissions electricity sector	Megaton	556	210	66	
Red					Blue					
		2030	2040	2050			2030	2040	2050	
Electricity consumption	PWh	4.8	5.1	5.3	Electricity consumption	PWh	4.9	5.1	5.4	
Renewable electricity generation	PWh	1.8	2.0	2.2	Renewable electricity generation	PWh	2.4	3.2	3.8	
	%	37%	39%	41%		%	49%	62%	70%	
Gas consumption	Billion m3	777	812	846	Gas consumption	Billion m3	696	644	631	
Gas imports	Billion m3	692	761	815	Gas imports	Billion m3	611	593	601	
Electricity infrastructure expansion	GW		36	20	Electricity infrastructure expansion	GW		56	56	
Gas pipeline expansion	Billion m3	250	93	125	Gas pipeline expansion	Billion m3	271	50	48	
CO2 emissions electricity sector	Megaton	893	830	798	CO2 emissions electricity sector	Megaton	627	451	347	

Summary across storylines Electricity consumption - infra expansion

Yellow			Green						
		2030	2040	2050			2030	2040	2050
Electricity consumption	PWh	4.2	4.2	4.2	Electricity consumption	PWh	4.2	4.2	4.2
Renewable electricity generation	PWh	2.1	2.4	2.3	Renewable electricity generation	PWh	2.0	2.0	3.0
	%	50%	58%	54%		%	48%	62%	71%
Gas consumption	Billion m3	507	455	480	Gas consumption	Billion m3	507	412	321
Gas imports	Billion m3	422	403	449	Gas imports	Billion m3	422	361	291
Electricity infrastructure expansion	GW		55	22	Electricity infrastructure expansion	GW		72	65
Gas pipeline expansion	Billion m3	142	35	41	Gas pipeline expansion	Billion m3	143	28	34
CO2 emissions electricity sector	Megaton	468	264	321	CO2 emissions electricity sector	Megaton	556	210	66
Red					Blue				
		2030	2040	2050			2030	2040	2050
Electricity consumption	PWh	4.8	5.1	5.3	Ilectricity consumption	PWh	4.9	5.1	5.4
Renewable electricity generation	PWh	1.8	2.0	2.2	Renewable electricity generation	PWh	2.4	3.2	3.8
	%	37%	39%	41%		%	49%	62%	70%
Gas consumption	Billion m3	777	812	846	Gas consumption	Billion m3	696	644	631
Gas imports	Billion m3	692	761	815	Gas imports	Billion m3	611	593	601
Electricity infrastructure expansion	GW (36	20	Electricity infrastructure expansion	GW		56	56
Gas pipeline expansion	Billion m3	250	93	125	Gas pipeline expansion	Billion m3	271	50	48
CO2 emissions electricity sector	Megaton	893	830	798	CO2 emissions electricity sector	Megaton	627	451	347

4. Conclusions

- Increasing RES has large consequences for investment requirements in trans-national electricity infrastructure (AC and DC)
 - If comparative advantages in RES potential in Europe are used
 - Results in particular electricity corridors
- Power sector main driver for gas market developments
 - Differences across Europe → corridors and LNG hubs
- Increase in RES has positive impact on operational costs, but negative impact on capital costs, net impact is likely to be positive with increasing RES share.
- Higher electricity infrastructure requirements may partly be compensated by lower gas infrastructure requirements

5. Recommendations

- Further support for focused infrastructure policy, with particular attention for some corridors (i.e. EU infrastructure package)
- Need for adequate policy signals regarding long-term CO2 price, since it is a major uncertainty in shaping of electricity generation mix
- Electricity infrastructure affects gas infrastructure (and vice versa), so energy policy should not focus on one sector in isolation
 - What is the future role of gas in the EU energy mix?

