

Energy research Centre of the Netherlands

Towards a better explanation of electricity savings in households

P. Vethman (ECN) EEDAL conference, May 24th 2011

Contents

Introduction Electricity savings in households: NL example Understanding electricity savings Conclusions

Energy using products (EuP) policy

Need for monitoring & evaluation of policy impacts

Important issue: improve understanding of electricity savings

ECN: energy research for policy analysis and support

ECN research on energy using products:

Energy modelling: e.g. decomposition analysis (Boonekamp, 2005)

National: e.g. Protocol Monitoring Energy savings (PME)

International: e.g. IEE Odyssee research project

Introduction

Review study:

'Modelling the energy use of products' (2011)

- Forthcoming -

ECN Electricity savings in households: NL example

Modelling approach used in NL: EVA model

Model name	EVA: "ElektriciteitsVerbruik Apparaten"
Model owner	Energy research Centre of the Netherlands (ECN)
Main clients	Government (national, foreign, EU)
General description	Bottom up-, technology based-, stock-, accounting-model Very detailed: 172 appliances in 19 product groups Ex ante and ex post evaluation Part of modelling system (other ECN models)
Main inputs	Stock (sales, lifespan), usage rates, energy consumption per label type, specific factors
Main outputs	Electricity consumption, savings and potential Decomposition analysis Five scenarios
Validation	Calibration on historical data to achieve fit Consistency checks

$\mathbf{F} \subseteq \mathbb{C} \setminus \mathbb{N}$ Electricity savings in households: NL example

7

Energy research Centre of the Netherlands

www.ecn.nl

$\mathbf{F} \in \mathbb{C} \mathbb{N}$ Electricity savings in households: NL example

- around 1/3 of total potential to be realised by policy
- main impact from Eco-design (standards): on dish washer, washing machine, refrigerator, freezer, set-top box, lighting, television, standby use

Understanding electricity savings

Trend consumption:

clear

Drivers and actual savings: less clear

1) Bottom up modelling

Literature and empirical findings:

Several modelling approaches and methods to evaluate savings

Bottom up modelling approach suitable for EuP policy analysis

- modelling individual products fits policy questions on product level
- > strengths: detail, comprehensible
- > limitations: data needs, explanation of economy and behaviour

2) Decomposition analysis

Change in electricity consumption over time:

main components \rightarrow stock x usage x technical performance (Δ)

Decomposition of the change in electricity consumption:

to quantify the contribution of components ("drivers")

Typical output: volume + structure + savings effects

2) Decomposition analysis

- shows where savings come from (usually technical efficiency)
- doesn't explain why savings arise (e.g. cause of technical efficiency)
- > applied in ex-ante and (particularly) ex-post evaluations

3) Findings from modelling approaches across the world...

Savings evaluation by decomposition analysis: not common practice

Limited attention for ex post evaluation (e.g. past policies)

Common data problems:

- data is lacking or difficult to obtain
- > lack of actual data: e.g. billing/metering data, measurements, audits
- > selective, actual data can also be valuable

Way forward for a better understanding of electricity savings:

- 1) Bottom up modelling is suitable approach
- 2) Account for demography, economy, behaviour (link with 1)
- 3) Use better savings evaluation methods: e.g. decomposition analysis
- 4) Use better data sources: e.g. measurements, surveys

International coordination of practices, methods, data collection?✓ Network of experts from ECN study

THANK YOU FOR YOUR ATTENTION !

Questions?