

The reverse water-gas shift reaction over Pd membranes

H. Li¹ A. Goldbach² C.H. Tang² J. Boon¹ J.A.Z. Pieterse¹ J.W. Dijkstra¹ R.W. van den Brink¹ C. Bao² H.Y. Xu²

¹Energy research Centre of the Netherlands (ECN) ²Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences

Presented at the 10th International Conference on Catalysis in Membrane Reactors (ICCMR10), June 20-24, 2011, Saint-Petersburg, Russia

Hui received an award at ICCMR10: "Younger scientist Best presentation" and is now a member of the European Membrane Society.

ECN-L--11-068

June 2011

The reverse water-gas shift reaction over Pd membranes

H. Li¹, A. Goldbach², C.H. Tang,² J. Boon,¹ J.A.Z. Pieterse,¹ J.W. Dijkstra¹, R.W. van den Brink¹, C. Bao², H.Y. Xu²

¹Energy research Centre of the Netherlands (ECN) ²Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences

li@ecn.nl

Outline

- > Why Pd membranes
- Lab-scale observations
- Bench-scale observations

Conclusion

General layout of a power plant with a membrane water gas shift reactor (M-WGS)

Energy research Centre of the Netherlands

www.ecn.nl

Chemical stability

Objective

- Investigate the influence of CO, CO₂ and CH₄ on the H₂ permeation of Pd membranes. Lab-scale investigation on Single component can provide background information for the influence of WGS mixtures.
- Investigate the influence of WGS mixtures (CO/CO₂/H₂O/CH₄) in a *bench-scale* membrane setup under near practical conditions.

H. Li et al., J. Phys. Chem. B, 112 (2008) 12182

H. Li, et al., J. Membr. Sci., 324 (2008) 95

H. Li et al., J. Membr. Sci., 299 (2007) 130

Outline

- > Why Pd membranes
- Lab-scale observations
- Bench-scale observations

Conclusion

Lab-scale

<u>Test:</u>

Separation of H₂ from CO₂/H₂ mixtures

Equipment:

A lab-scale membrane setup

Membranes:

- Pd membrane tubes (electroless plating) supported on Al₂O₃ substrate (glazed support)
- ✤ 5 cm long, 2 µm thick Pd layer, sel. >2000

Pd layer

7

Test program (CO₂/H₂ separation)

Conditions:

- ✓ Temp: 250-500 °C
- ✓ 10% CO₂/H₂, 20% CO₂/H₂, 40% CO₂/H₂
- ✓ P_{feed}: 2-5 bar, P_{perm}: 1 bar
- ✓ Feed: 0.1 NI/min-2.5 NI/min, no sweep

Objective

- Examine the surface reaction on the catalytically active Pd membrane surface during the separation of CO₂/H₂ mixtures.
 - Measure the retentate gas composition by GC
 - Investigate the H_2 permeation flux of CO₂/H₂ mixtures as a function of time.
- Investigate the influence of operation parameters.

Main observations:

Possible reactions existing on membrane surface

Influence of feed flow rate

10% CO_2/H_2 mixtures at 450 °C and 2 bar(a)

Influence of feed flow rate

10% CO_2/H_2 mixtures at 450 °C and 2 bar(a)

Influence of feed pressure

10% CO_2/H_2 mixtures at 450 °C and a feed flow rate of 2 NI/min

Influence of feed pressure

10% CO₂/H₂ mixtures at 450 °C and a feed flow rate of 2 NI/min

Influence of temperature

10% CO_2/H_2 mixtures at 2 bar(a) and a feed flow rate of 2 NI/min

Evidence of carbon deposition

Summary:

- Significant *RWGS* reaction and minor methane formation was observed on the Pd membrane surface during separation of CO₂/H₂ mixtures, which were enhanced with decreasing feed flow rate and increasing feed pressure, temperature and CO₂ concentration.
- Under certain conditions, also degradation of the membrane performance was observed, due to *carbon deposition* on the membrane surface.

Outline

- > Why Pd membranes
- Lab-scale observations
- Bench-scale observations

Conclusion

PDU overview

1550 cm², 8.5 Nm³/hr-H₂

Energy research Centre of the Netherlands

www.ecn.nl

Alumina tube

Membrane tube

WO 2005/065806 A1 WO01/63162A1, 2001

3 Pd membranes

44 cm effective length, 5.6-6.2 μm Pd layer

H₂/N₂ sel. 4000

316Ti reactor tubes

no catalyst

Test program (separation of WGS mixtures)

Conditions:

- ✓ Temperature: 400 °C
- ✓ 4% CO, 19.2% CO₂, 15.4% H₂O, 1.2% CH₄ and 60.1% H₂
- ✓ P_{feed} : **20-35** bar(a), P_{perm} : **15** bar(a)
- ✓ Feed: 30 I/min-90 I/min, sweep: 19.57 I/min
- GRACE project (EU FP 6): upstream ATR@1000 °C + pre-wgs @350 °C
- Negative equilibrium conversion @400 °C

Energy research Centre of the Netherlands

www.ecn.nl

Main conclusions:

- Significant *RWGS* reactions were observed during the separation of CO₂/H₂ mixtures and wet syngas mixtures respectively in a lab-scale and benchscale setup.
- Under certain conditions, also degradation of the membrane performance was observed, due to carbon deposition on the membrane surface.

Main conclusions:

In the presence of steam the membrane performance remained stable.

The Ministry of Science and Technology of China

www.cachetco2.eu

www.most.gov.cn/

Acknowledgement: DICP (Dalian Institute of Chemical Physics, China) for membrane preparation, Yvonne van Delft (ECN)

Energy research Centre of the Netherlands

Thank you for your attention

1550 cm², 8.5 Nm³/hr-H₂

Pure H₂ permeance, separation & shift test

N₂ permeance remained unchanged after catalyst loading

DICP-proprietary method to prepare high flux Pd membranes

