

# Conceptual Process Design of an Organosolv-Based Wheat Straw Biorefinery for the Co-Production of Bioethanol, Furfural and Lignin

R. van der Linden W.J.J. Huijgen H. den Uil

Presented at the 7th International Conference on Renewable Resources & Biorefineries, 8 – 10 June, 2011 – Bruges, Belgium

ECN-L--11-060 June 2011



**Energy research Centre of the Netherlands** 

# Conceptual Process Design of an Organosolv-Based Wheat Straw Biorefinery for the Co-Production of Bioethanol, Furfural and Lignin

Raimo van der Linden, Wouter .J.J. Huijgen, Herman den Uil





#### **Outline**

- Introduction
  - ECN
  - Goal of this presentation
  - Lignocellulosic biorefinery
  - Organosolv
- Process description
- Mass and energy balances
- Economic analysis
- Conclusions and outlooks



## ECN: Energy research Centre of the Netherlands

- Bringing sustainable energy to the market
- Located in <u>Petten</u>, Amsterdam, Eindhoven, Beijing



### ECN: Energy research Centre of the Netherlands

- Bringing sustainable energy to the market
- Located in <u>Petten</u>, Amsterdam, Eindhoven, Beijing
- Business units:
  - Biomass, coal and environmental research
  - Solar energy
  - Wind energy
  - Policy studies
  - Efficiency and infrastructure
  - Engineering and services



#### Goal of this presentation

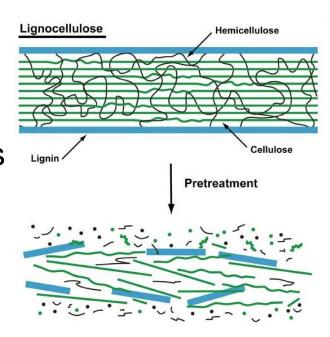
- Evaluation of organosolv biorefinery for the production of ethanol, furfural and lignin
  - Mass and energy balances
  - Heat integration
  - Economic analysis
- All necessary process equipment included



#### **Biorefinery**

- Processing of biomass into multiple products
- The core of the bio-based economy
- Biorefinery is the sustainable processing of biomass into a spectrum of marketable products and energy (IEA Definition)




#### **Goals fractionation**

- Fractionation of lignocellulosic biomass into its main constituents with sufficient quality for production of (bio)chemicals (including lignin)
- Enhancement (enzymatic) degradability of cellulose to fermentable sugars



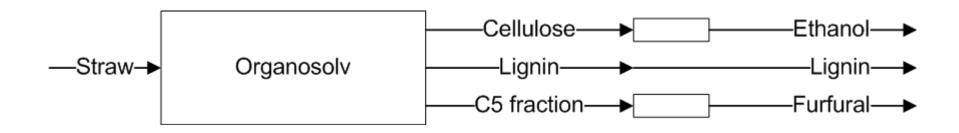
#### Organosolv (general)

- Feedstock: lignocellulosic biomass
- Extraction of lignin with organic solvent and water
- Hydrolysis hemicellulose into sugars and derivatives
- Liberate cellulose fibres (make pulp)





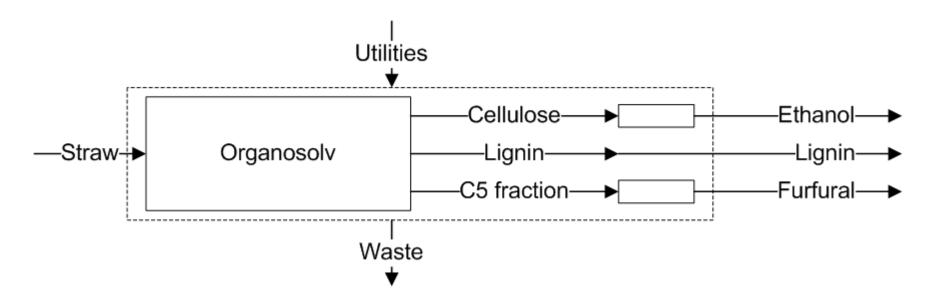
#### **Organosolv Biorefinery**


- Feedstock: wheat straw
- Solvent: ethanol + water
- Marketable products: ethanol, furfural and lignin





#### **Organosolv Biorefinery**


- Feedstock: wheat straw
- Solvent: ethanol + water
- Marketable products: ethanol, furfural and lignin





#### **Organosolv Biorefinery**

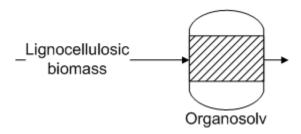
- Feedstock: wheat straw
- Solvent: ethanol + water
- Marketable products: ethanol, furfural and lignin



15-6-2011

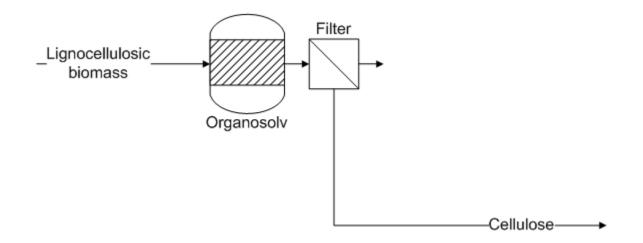


#### **Assumptions Organosolv Process**


| • | Lignin | removed fr | om pulp | 80% | 0 |
|---|--------|------------|---------|-----|---|
|---|--------|------------|---------|-----|---|

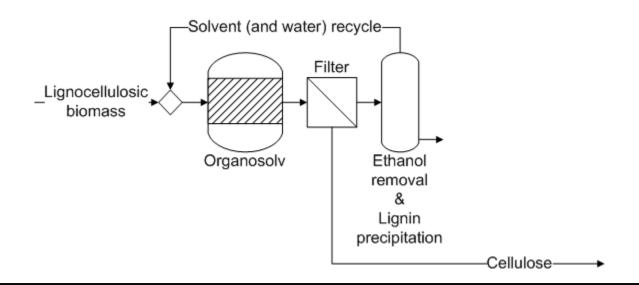
- Hemicellulose hydrolysis
  95%
- Cellulose in pulp95%
- $T = 200^{\circ}C$
- P = ~32 bar
- Residence time = ~ 1 hr
- Ethanol/Water = 60/40 wt




Organosolv reactor:

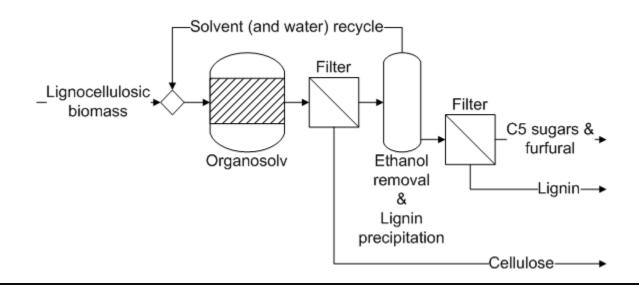
$$Straw_{(s)} \rightarrow Cellulose_{(s)} + Lignin_{(aq)} + Hemicellulose_{(aq)}$$






A filter removes cellulose from the liquid mixture



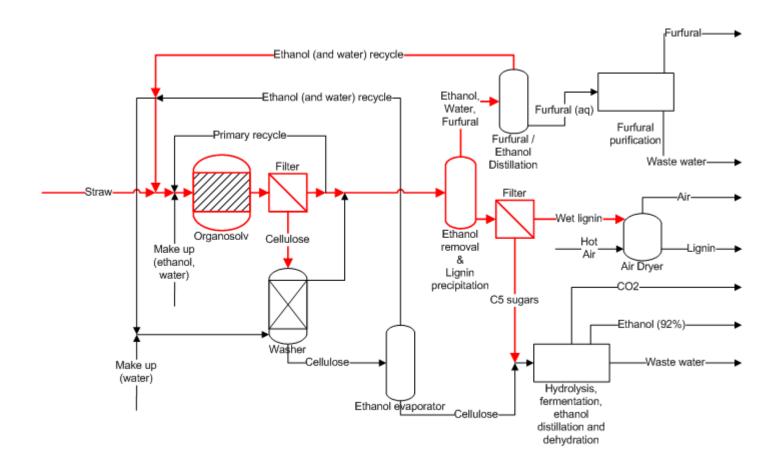



- Lignin is precipitated by removing the ethanol (lowering lignin solubility)
- Ethanol recycling is 99.9%; Crucial for economics





- A filter separates the lignin from the C5 sugars
- Organosolv can fractionate all the three main biomass components into separate streams






- Multiple additional process units are needed for:
  - Ethanol removal from:
    - C5 sugars and furfural stream
    - Cellulose pulp
  - Lignin drying
  - Furfural purification
  - Conversion cellulose to fuel-grade bioethanol



#### Organosolv process flow sheet





#### Mass balance

| IN      | kg / kg straw |
|---------|---------------|
| Straw   | 1.00          |
| Ethanol | 0.0038        |
| Water   | 2.17          |
|         |               |
|         |               |
|         |               |
|         |               |
| Total   | 3.17          |

| OUT                 | kg / kg straw |
|---------------------|---------------|
| Ethanol             | 0.22          |
| Furfural            | 0.059         |
| Lignin              | 0.19          |
| Waste water         | 2.33          |
| CO <sub>2</sub> (*) | 0.19          |
| Water vapor         | 0.18          |
|                     |               |
| Total               | 3.17          |

(\*) from fermentation only

- Straw to products: 52% wt
- Energy efficiency straw to products: 66%, (LHV based)

15-6-2011



#### **Energy balance**

| Unit operation                 | Heat<br>(MJ/kg straw) |
|--------------------------------|-----------------------|
| Ethanol removal from lignin    | 3.4                   |
| Ethanol removal from cellulose | 0.9                   |
| Ethanol product distillation   | 1.0                   |
| Other                          | 1.8                   |
|                                |                       |
| Total                          | 7.1                   |

| Unit operation                 | Cooling<br>(MJ/kg straw) |
|--------------------------------|--------------------------|
| Ethanol removal from lignin    | 2.6                      |
| Ethanol removal from cellulose | 0.6                      |
| Ethanol product distillation   | 0.6                      |
| Other                          | 2.8                      |
|                                |                          |
| Total                          | 6.6                      |

Heat integration is essential



#### **Heat integration**

- Coupling coolers and heaters to use heat multiple times
- Changing the pressure in separations to change the boiling points, to allow integration

|         | No heat integration MJ/kg straw |     |
|---------|---------------------------------|-----|
| Heating | 7.1                             | 3.3 |
| Cooling | 6.6                             | 2.9 |

~20% of LHV of straw



#### **Economic analysis**

- Scale:
  - 140 kton/yr straw (dw)
  - Straw from a 50 km radius around plant
- 8000 hrs of operation / yr
- Standard literature methods for cost factors
- Price index: end of 2010
- Location: EU



#### Income

| Product  | Flow (kton/yr) | Price (€/ton) | Income (M€/yr) |
|----------|----------------|---------------|----------------|
| Ethanol  | 32.1           | 750           | 24.1           |
| Furfural | 9.19           | 625           | 5.7            |
| Lignin   | 23.1           | 500           | 11.6           |
|          |                |               |                |
| Total    |                |               | 41.4           |



#### **Operating costs, raw materials**

| Raw materials        | Flow (kton/yr) | Price (€/ton) | Costs (M€/yr) |
|----------------------|----------------|---------------|---------------|
| Straw (10% moisture) | 156            | 60            | 9.33          |
| Ethanol              | 0.58           | 750           | 0.44          |
| Water                | 337            | 5             | 1.68          |
| Enzymes              |                |               | 1.5           |
|                      |                |               |               |
| Total                |                |               | 12.96         |



#### **Operating costs, total**

| Operating costs | Costs (M€/yr) |
|-----------------|---------------|
| Raw materials   | 12.96         |
| Utilities       | 4.7           |
| Maintenance     | 6.0           |
| Other           | 10.34         |
|                 |               |
| Total           | 34.0          |



#### **Investments**

| Purchase costs              | Cost (M€) |
|-----------------------------|-----------|
| Reactor                     | 5.0       |
| Lignin work-up              | 1.8       |
| Heat exchangers (all plant) | 2.4       |
| Fermentation section        | 2.3       |
| Other                       | 2.1       |
|                             |           |
| Total                       | 13.6      |

Physical plant costs: 43 M€

Total Fixed Capital: 60 M€

15-6-2011



#### Summary economic analysis

- Scale:
  - 140 kton/yr straw (dw)
- Income: 41.4 M€/yr
- Operating costs: 34 M€/yr
- Net revenue: 7.4 M€/yr
- Investment: 60 M€



#### **Economic analysis, discussion**

- Very sensitive to feedstock and product prices
- Energy costs are not the main cost factor
- Outlook:
  - Income can be higher if cellulose is used as material
  - Lignin price 500 €/ton: payback time about 8.2 yr
  - Lignin price 750 €/ton: payback time about 4.6 yr



#### **Conclusions**

- Organosolv biorefinery wheat straw:
  - Mass efficiency to products: 52%wt
  - Energy efficiency to products: 66%
  - Heat integration crucial, and feasible
  - Overall heat consumption modest
  - Economic return: interesting
  - Good lignin price essential for economics



#### Thank you for your attention!

More information:

vanderlinden@ecn.nl

This work has been performed with subsidy of the Dutch ministry of Economic Affairs, Agriculture and Innovation, and the European Commission in the context of the BIOSYNERGY and BIOCORE projects.







http://www.biosynergy.eu/







http://www.biocore-europe.org/