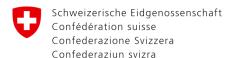


Greenhouse gas budgets of grassland systems: consideration to match sustainability, food security and energy production in a changing climate

A. Neftel


C. Ammann

P. Calanca

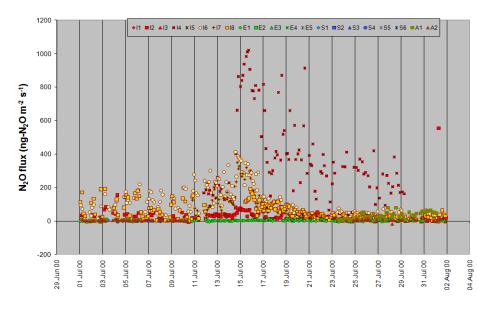
A. Hensen

Presented at the Nitrogen and Global Change: Key Findings – Future Challenges, Edinburgh, Scotland, April 11-14, 2011

ECN-L--11-045 April 2011

Greenhouse gas budgets of grassland systems: consideration to match sustainability, food security and energy production in a changing climate.

Albrecht Neftel, Christof Ammann, Pierluigi Calanca – The Artists of ART Franz Conen University of Basel Arjan Hensen - ECN


Edinburgh, 12. April 2011

Operation Preface

What a pitiable WP 1 scientists gets after a tremendous effort: numbers,

numbers, numbers....

and he should go for the big picture...

The modul race...

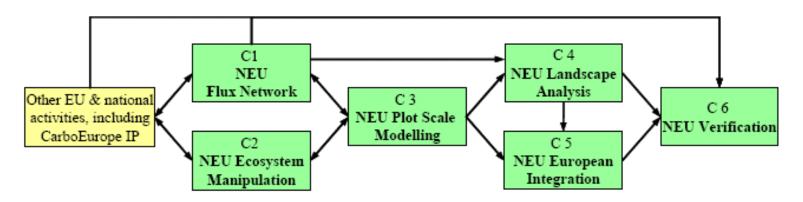
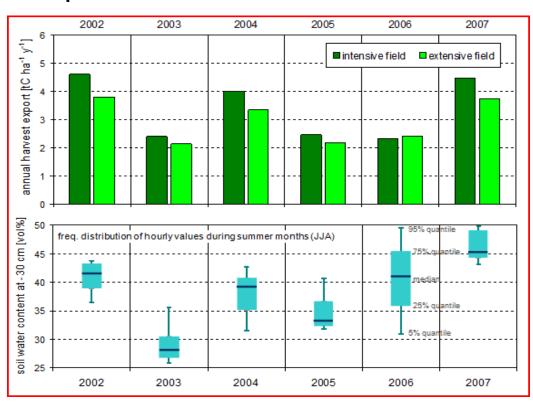


Figure 6.2. Information flow between the six main science Components of NitroEurope. The roles of four supporting Components (C7-10) are shown in Figure 6.4.

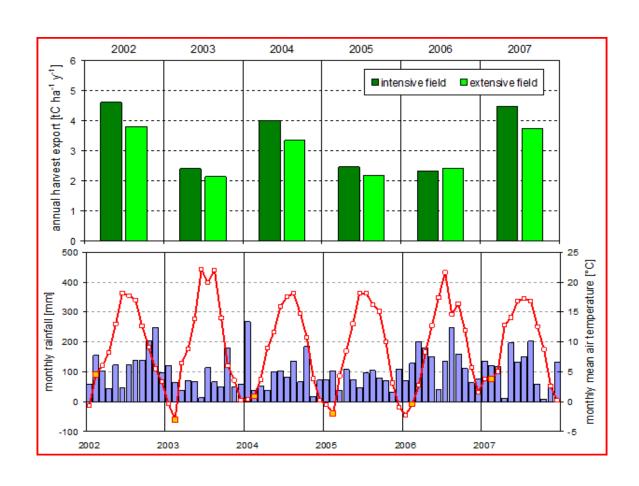
Let's do shortcuts during the next 15 minutes to contribute to the big picture

Outline: Grasslandsystems and GHG

- Yield variability and climate
- GHG emissions and grassland: N₂O versus Csequestration
- Ecosystem services of grasslands
 - >Food production
 - > Ecosystem services
 - ➤ Energy production
- Orders of magnitude to keep in mind

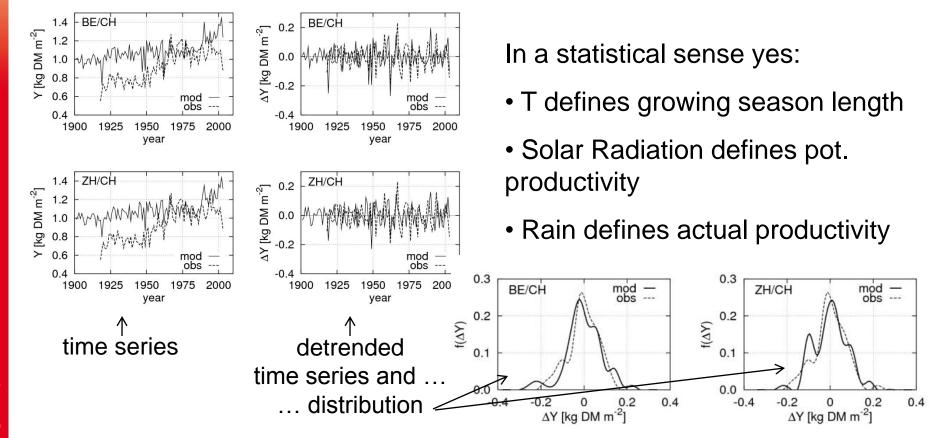

Role of grassland systems in European agriculture:

■Grasslands cover 0.6-1.5×10⁶ km² that is 15% of the EU-25 territory, and 35% of the EU-25 agricultural lands.


- Switzerland: 60% of agricultural used land
- Grass is used by ruminants for dairy and meet production

Grass productivity and climate variability

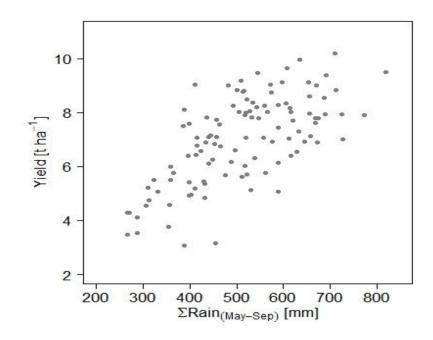
Mown grasland in Oensingen: Soil water is important



But apparently also the late winter/early spring temperature

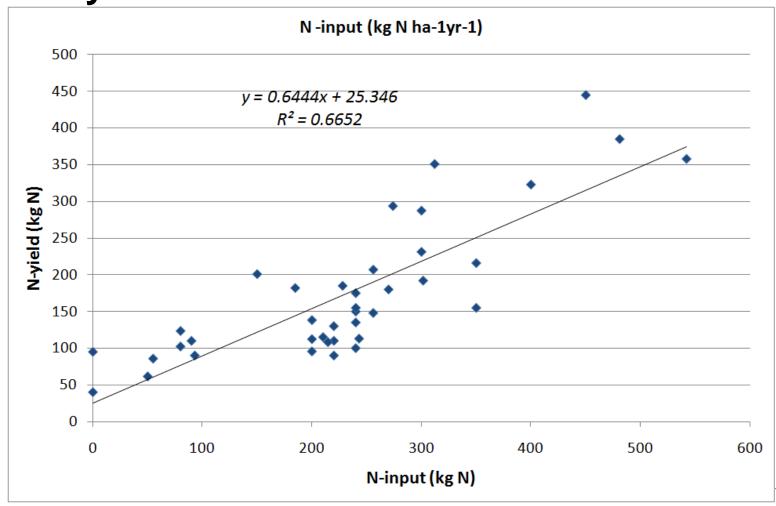
Is grass yield predictable based on simple meteorological drivers?

Empirical models tell us


•Meteorological related variability of the yield is in the order of 10% with largest deviation up to 20%

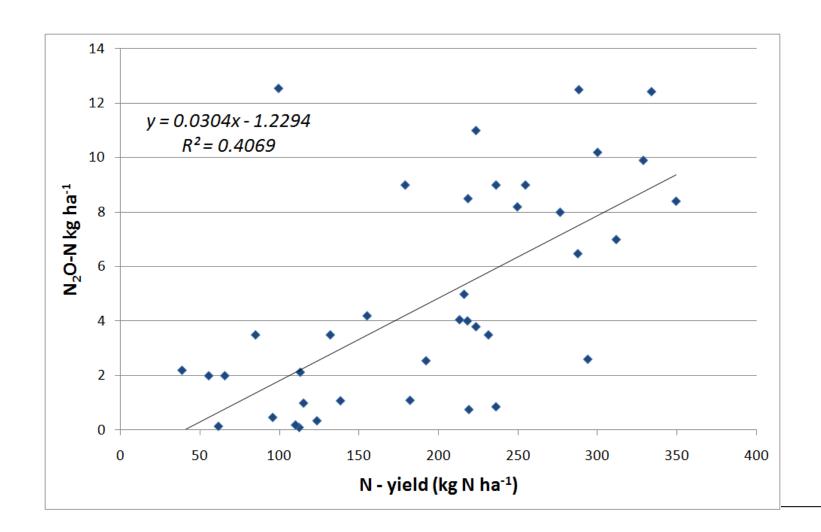
 Hypothesis: This variability will increase in the near future due to climate change

PROGRASS suggests a strong dependence on precipitation

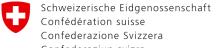

Simulation with processed oriented model PROGRASS

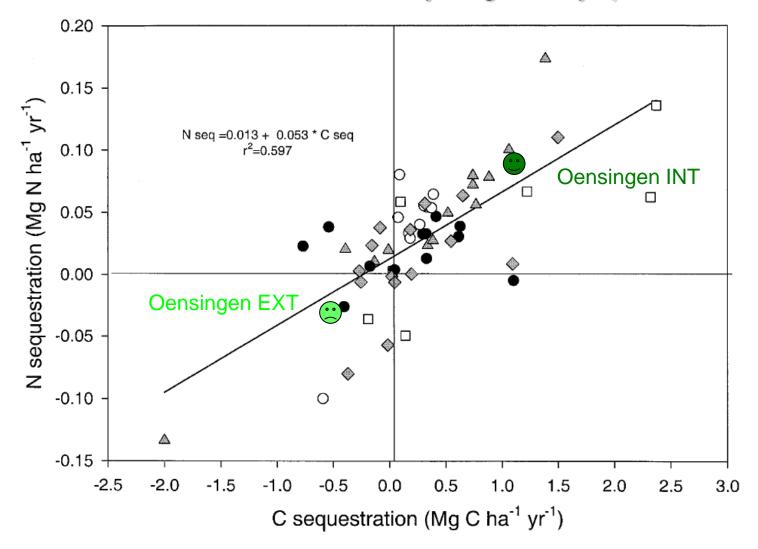
Outline: Grasslandsystems and GHG

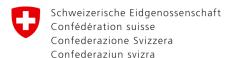
- Yield variability and climate
- GHG emissions and grassland: N₂O versus Csequestration
- Ecosystem services of grasslands
 - >Food production
 - > Ecosystem services
 - ➤ Energy production
- Orders of magnitude to keep in mind



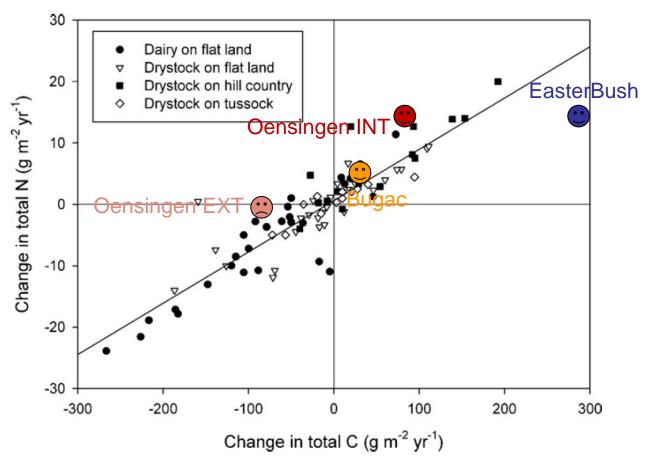
Relation between N-input and productivity of European grassland systems

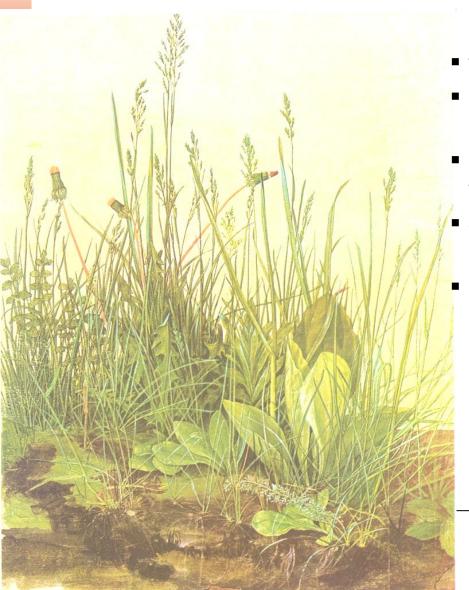

N₂O emission and N-yield




Increasing pressure on extending grasslands to serve higher ranking societal needs:

- Mitigation of GHG emissions by C-sequestration
 - "The carbon sequestration efficiency of grasslands, defined as the ratio of NBP to NPP, amounts to 0.09±0.10. Therefore, per unit of carbon input, grasslands sequester 3–4 times more carbon in the soil than forests do, making them a good candidate for managing onsite carbon sinks. Ciais et al. (Biogeosciences Discuss., 7, 5997–6050, 2010)


Literature overview from Conant et al. (2005, Nutr.Cycl.Agroecosys.)


General relationship between C and N sequestration of grazed grasslands

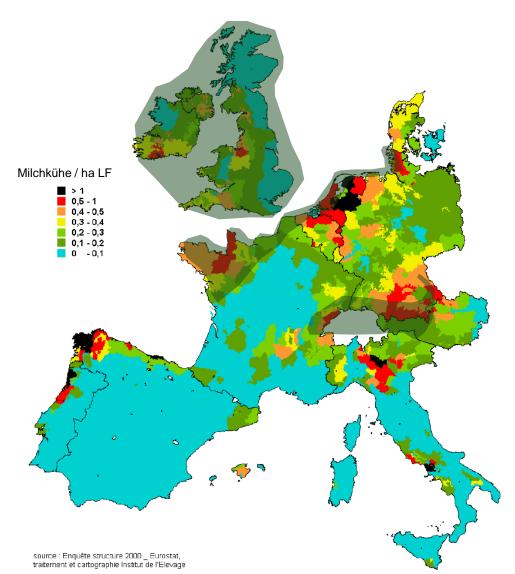
New Zealand study by Schipper et al. (2010, Agric. Ecosys. Environ.)

Listen to the talk by Christof Ammann tomorrow 12:00 Carrik 2&3

N-cost of C sequestration in a fertile soil

- typical C:N ratio in fertile soil is 10.
- Sequestring 1.0 t C means sequestring 0.1 t N
- 1 t N costs \$ 800 (if applied as mineral fertiliser)
- 45 % of applied N is lost to atmosphere and water.
- 1 t sequestered C needs \$ 145 worth of N (= \$ 40 / t CO₂)

Outline: Grasslandsystems and GHG


- Yield variability and climate
- GHG emissions and grassland: N₂O versus Csequestration
- Ecosystem services of grasslands
 - ➤ Food production
 - > Ecosystem services
 - >Energy production
- Orders of magnitude to keep in mind

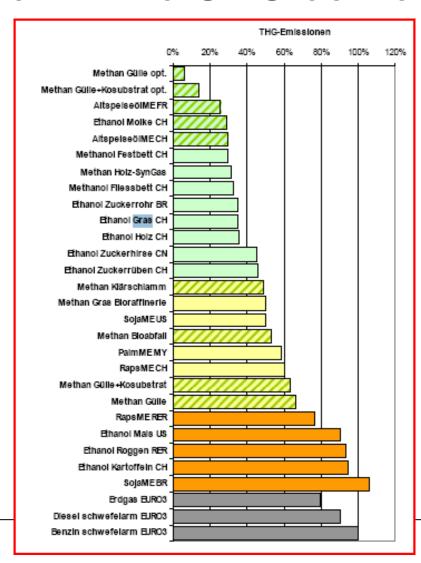
Main food product of grassland: Dairy product (milk and meet)

 Green milk: Feeding of animals based > 85% on roughage (gras, hay, etc...)

Currently only about 10 to 20% of the European milk is green milk

Additional ecosystem services of grasslands

- Extensively managed hay meadows are a large biodiversity reservoir
- Species rich pastures have a higher yield
- Grassland process organic manure that originate from diary production and meet production in general
- Grassland are sinks for reactive trace gases such as NO_v, O₃, NH₃ etc


Outline: Grasslandsystems and GHG

- Yield variability and climate
- GHG emissions and grassland: N₂O versus Csequestration
- Ecosystem services of grasslands
 - >Food production
 - > Ecosystem services
 - > Energy production
- Orders of magnitude to keep in mind

Gras based energy production

- ■Mean yield: 10 t DM ha⁻¹ year⁻¹
- ■1 kg DM yields 1.0 ... 4 kWh
- ■We use througout the presentation a value of 1.0 kWh based on the report "Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen, R. Zah et al., Empa (2007)"
- ■1 ha might produce: 10'000 kWh or 1'000 liter gasoline

C LCA biofuel Gras is a reasonable biofuel in the GHG context

Outline: Grasslandsystems and GHG

- Yield variability and climate
- GHG emissions and grassland: N₂O versus Csequestration
- Ecosystem services of grasslands
 - >Food production
 - > Ecosystem services
 - ➤ Energy production
- Orders of magnitude to keep in mind

Energy use related to management of Golf courses

From Thumm et al: University Hohenheim "Energetische Verwertung des Schnittguts von Golfanlagen

- A 65 ha 18 hole golf course potentially produces 65'000 liter biogasoline per year
- ■1000 members driving cars with an average mileage of 10 l 100 km⁻¹ can drive 650 km year⁻¹
- (Alternatively you could feed 400 citizen)

GHG aspects of Bioenergy:

■ Per hectare 1000 Liter gasoline can be gained. This corresponds to 2320 kg CO₂ or 632 kg C

(conversion factor used: 1 liter gasoline yields 2.32 kg CO₂ or 0.632 kg C).

- The production is associated with an emission of 4.5 kg N₂O –N.
- With a GWP of 127 this corresponds to 571 kg C_{equivalent} or 91% of the "saved" CO₂ emissions (1 kg N₂O – N corresponds to 127 kg CO₂ -C _{equivalents})

Further hypothesis: Dairy and meat production will decline by 20% due to:

- Adaption of production level to larger grass and crop yield variability
- Due to NEU the demiterian idea becomes a big societal success
- Awareness of the urgent need to reduce GHG emissions is increasing

But average grass yield stays constant

- Total grassland production in Switzerland: 5.4
 Mt DM year-1
- ■20% corresponds to 1.08 MT DM year-1
- Associated energy production potential: 1100
 GWh year⁻¹ or 3960 TJ
- Total energy consumption Switzerland: 865250 TJ
- Potential grassland contribution: 0.45%
- With bankers words: Peanuts!

What happens if a Porsche Cayenne owner becomes a demiterian?

- Average meet consumption: 100 kg per capita and year
- Cut in half
- ■With this 250 kg CO₂ equivalent are saved
- ■This allows to drive about 500 800 km

Conclusions

- Grass should primarily be used to feed ruminants that in turn feed humans
- Bioenergy from grassland system cannot solve any energy supply problem.
- It can only be an option as a surplus/waste management in connection with conservation or increase of biodiversity and potential Csequestration.
- Increased grassland productivity for energy production only will be the wrong way to go!

Thank you!

Albrecht.neftel@art.admin.ch