

Integrated Nitrogen Ceilings Approach

How to manage excess nitrogen

A. Bleeker

A. Hensen

C. Rougoor

K. Sanders

J.W. Erisman

Presented at the 5th International Nitrogen Conference, 3-7 December 2010, Delhi, India

ECN-L--10-122 December 2010

Energy research Centre of the Netherlands

Integrated Nitrogen Ceilings Approach How to manage excess nitrogen

A.Bleeker, A.Hensen, C.Rougoor, K. Sanders & J.W. Erisman

The Netherlands: where / what is it?

Netherlands: more than that

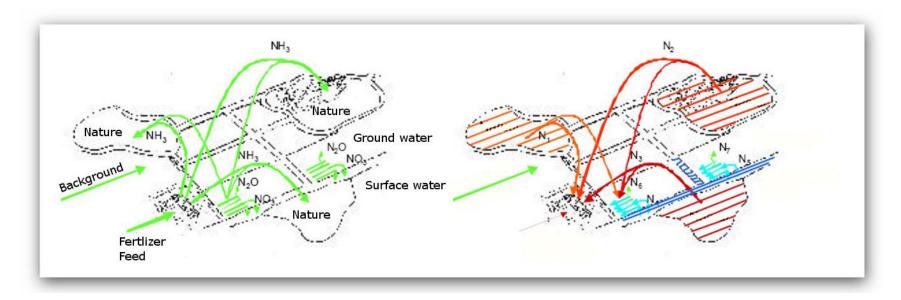
- population: 16,609,000
- (land) area: 33,000 km²
- pop. density: 492 cap/km² (India: 360 cap/km²)
- Agriculture:
 - 68% of area
 - cattle: 4,000,000
 - pigs: 13,000,000
 - poultry: 97,000,000
- Intensive industry
- Largest harbour of Europe much transport

Netherlands & Nitrogen

What do we see:

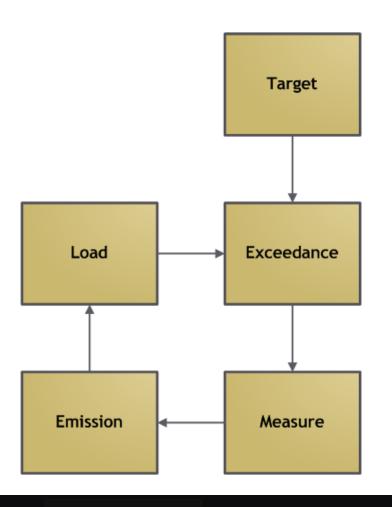
- Much tension between activities and the things we want to protect
 - Human health
 - Nature areas
 - Water quality
 - Etc.
- Policy is still treating these areas separately (both emissions / effects)
 - Resulting in possible pollution swapping

Integrated approach needed


- All the nitrogen forms/sources/effects are treated simultaneously
- When possible, regulate the input into the system (fertilizer, feed, fossil fuel)
- Policy-makers can then evaluate possible measures in an integrated way
- Methodology has been set up for the Netherlands, but (with proper data) also applicable in other parts of the world
- No detailed information, but a general description of the methodology (work in progress)

Principle of the emission ceilings approach

 Defined as the maximum level of emission from a region that doesn't have a negative effect on its surroundings



- Previous studies had a focus on agriculture
- Now extending this to other sources and larger regions

Setting up the system

- However:
 - Multiple sources
 - Multiple targets
 - Multiple measures
- Distance To Target (DTT) is used for evaluating the exceedances (and actions to be taken)

Distance to Target (DTT)

Load

Target

БТТ	
DTT	

• NH₃

 NO_{x}

 N_2O

NO₃

PM

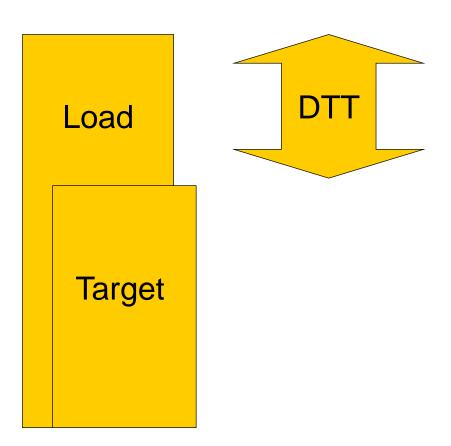
Critical load

Critical load

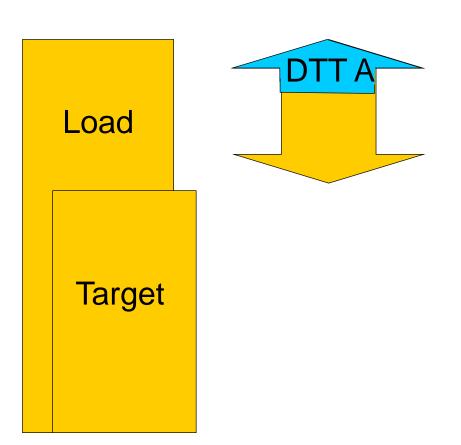
Concentration (40 µg/m³)

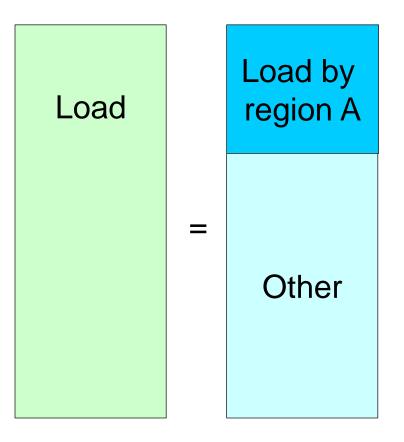
Emission: -6% (for NL)

Groundwater (inside area)

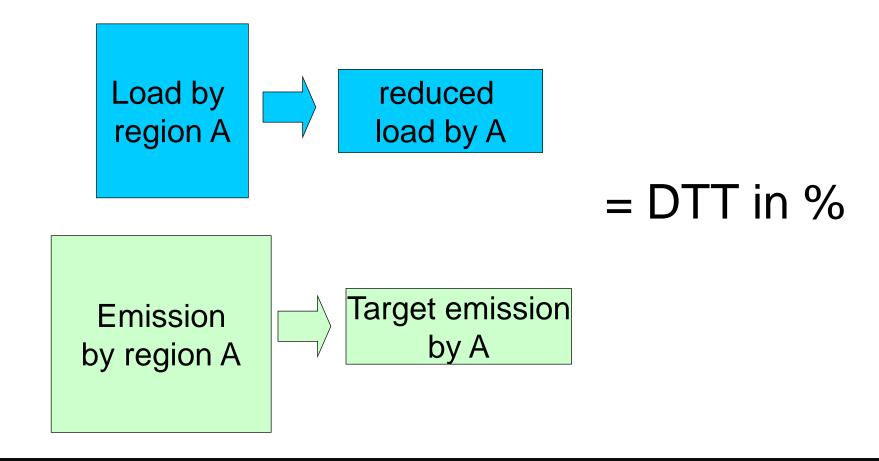

Surface water (outside area too)

Concentration (35 µg/m³)


Responsibility for reaching the target



Responsibility

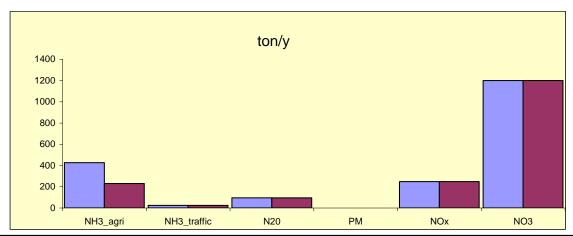


Using the responsibility

Measures

- List of measures with:
 - Emission reduction percentages
 - Costs for implementation (in Euro/kg reduced)
- For ranking the measures according to their efficiency, 'compensating costs' are taken into account:
 - Measure taken for NH₃ gets 'extra costs' when at the same time additional N₂O is emitted, but 'extra credits' when additional N₂O is reduced.

The emission ceiling 'system'


- The system was build, using
 - Hypothetical region
 - Hypothetical data
- NH₃, NO_x, NO₃, N₂O included PM not yet
- Not all measures complete (costs are sometimes a problem)
- First version in MS-Excel, next version will also be able to deal with geographical data

Emission overview per area

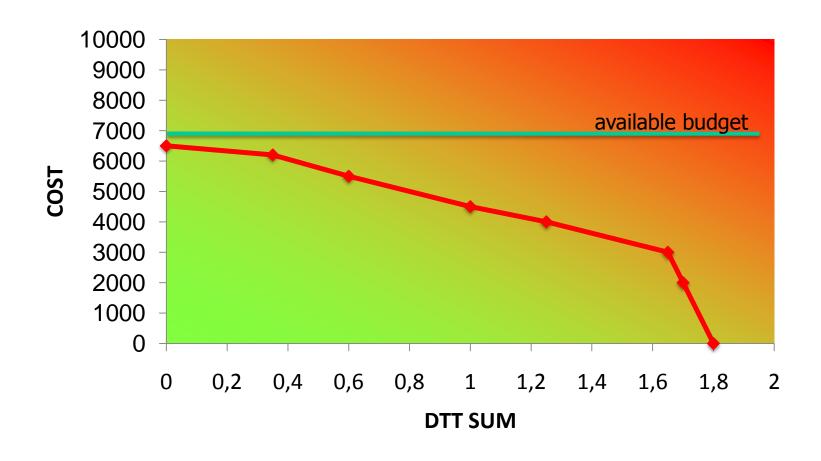
	NH3_agri	NH3_traffic	N20	PM	NOx	NO3
Default emission levels	427	25	95	0	248	1200
Dairy	60%	0%	45%	10%	0%	40%
Domestic	0%	0%	5%	5%	20%	10%
Industry	0%	0%	10%	30%	20%	5%
Pigs	18%	0%	5%	5%	0%	20%
Poultry	22%	0%	5%	10%	0%	20%
Traffic	0%	100%	30%	40%	60%	5%

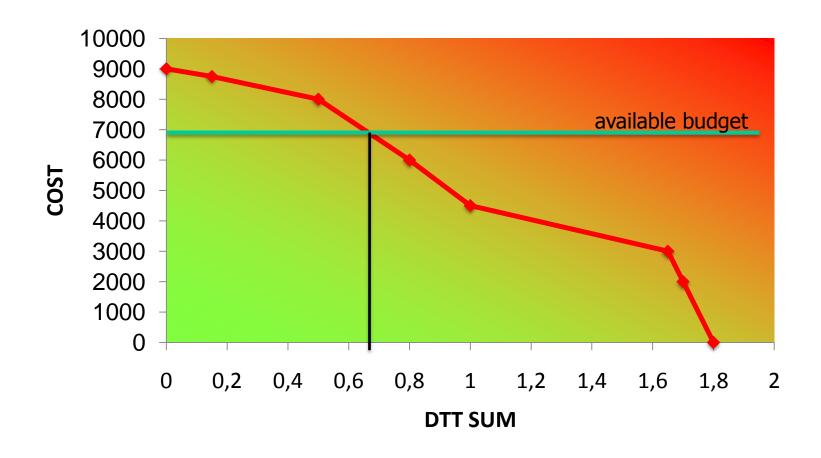
Distance To Target

Area	3				
	•	•			
	Default	Depo	Conc	Exceed/Res	Start DTT
	Emission			pons	
	4	(tN/-)			
	tonN/y	(tonN/y)			
Whole domain					
NH3	427	106		32	30%
NOx	13	10		4	34%
N2O	85				6%
NO3	260		18	0	0%
PM					

Measures

Dairy sector measures Information		Defau	It emission levels ils with measures eduction	150 E H H H H H H H H H H H H H H H H H H	95 95	0 0	Š 248 161		1200 1200
Number Label	Implement	NH3_agri	NH3_traffic N20- emissie Fijn stof	NOx N-emission 'other'	totale N- emission- change	Cost (/kg NH3)	Cost (/kg NOx)	Cost (/kg N20)	/ kg N- emiss ion
A1. Reduce N-input 1.1 Dairy reducion artificial fertiliser/use 1.2 Reduced krachtvoergebruik	0% 0%	-0.9 0	-1 -2.8 0	-38 -0.3					
A2. Manure application 2.1 minder mestaanwending 2.2 low emission application 2.3 use diferent type artificial fertiliser 2.4 trailing hose 2.5 use injector on arable land 2.6 low emission housing system	0% 0% 0% 0% 0%	-3.5 -25 -7 -1.7 -5.0 -3.3	-1.9 -1.1 0	-53 26.6 7.5	67	1 1 1 0.00 0.30 12.10	nvt nvt nvt nvt nvt	5 66 nvt	0 -6 -6
A3. Manure storage 3.1 Cover solif manure storage Increase manure storage capacity/ 3.2 reduce application episode	0%		0						
A4. Feeding 4.1 low ureum/ food adaptation	0%	-1.7	-0.6	9.03	106	9.00	nvt		0.00
A5. Grazing 5.1 Increase share grazing	0%	-1.2	3.4	35.8	512	0.00	nvt		0.00
A6. Technical adaption / housing 6.1 Low emission housing dairy 6.2 Acidify manure 6.3 Manure burning / energy generation 6.4 Codigesting	0% 100% 0%	-4 -17	0 -2.1	27.3 18.6	46	25 7	nvt nvt		-4 -39


Effect of selected measures on DTT

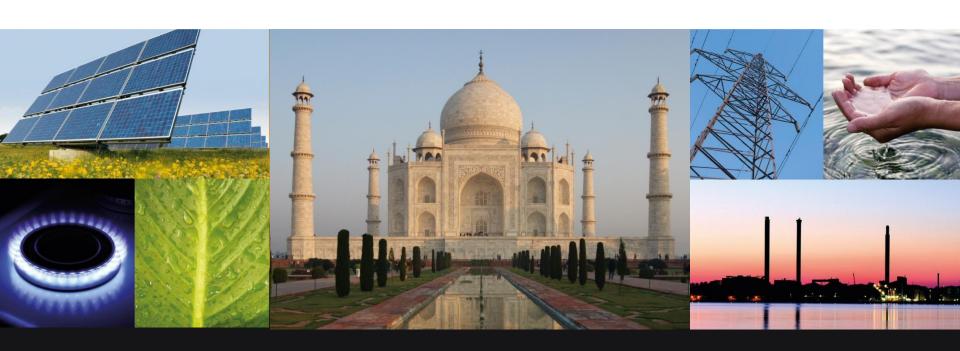

Scoring the measures

Scoring the measures

Concluding remarks

- System for working with integrated emission ceilings was build
- When full list of measures is available, policymakers can evaluate them in an integrated way
- So far, the system is independent of region/scale.
 Depending on the availability of data, implementation for different regions/countries is relatively easy
- However,

Still to be done:


- Use real (spatial) data
- Upscaling to larger areas
- Include PM
- Finalize list of measures
- Optimisation procedure for selecting most efficient measures automatically

Energy research Centre of the Netherlands

More information

a.bleeker@ecn.nl

