8th – 10th June 2010

PLUG INTO RENEWABLES

Policies for renewables in the Netherlands and in Europe

Paul van den Oosterkamp Manager Renewable Energy ECN/Policy Studies

Outline and main messages

- The global energy challenges will result in a paradigm shift to a low carbon energy mix
- The Dutch RES targets are very ambitious
- The EU market for renewable Electricity is very fragmented
- Intensification of market support mechanisms is needed to arrive at 20 % RES in Europe
- The role of solar PV will be substantial after 2020

The global energy challenges

World

Energy production

Other-

Hydrop

 Energy (474 EJ in 2008) demand is satisfied by 78 % through oil, gas & coal

The global energy challenge

- Provide acces to modern energy for the poor
- Reduce dependence on imported oil and gas
- Mitigate climate change
- Stimulate sustainable economic growth through innovation
- Design a stable and long-term policy framework for exploitation and innovation
- Make use of specific regional advantages

Devise scenario models to support policy measures

Impact on renewable technology implementation

Source : Energy Technology Perspectives 2008

Renewable energy in the Netherlands

- The Netherlands realized a share of 3.4 % RES in 2008
- Wind and Biomass (co-firing and municipal waste) are the largest contributors in the RES share
- Renewable electricity is close to the 9 % target for 2009

Renewable electricity as share of total electricity consumption

Renewables are communicating vessels between electricity, heat and transport

Example: Renewable heat NL :

	1995	2006	2008
Solar thermal Heat pumps Heat storage Waste incineration Wood stoves Other combustion	0,1 0,1 - 1,2 6,5 0,3 2,8	0,6 2,2 0,5 3,5 7,1 3,6 2,4	0,6 4,1 0,7 3,6 7,3 4,0 2,2
Digestion Total	11,2 PJ	19,9 PJ	22,7 PJ
Share of total RE	1,0%	1,8%	2,1%

Policy framework for renewable energy

• technical, theoretical and economic constraints:

Policy instruments in Europe

Supply	Feed-in tariff/premium Germany, Austria, Spain, Portugal, Greece, Finland, France, Netherlands Denmark, Estonia, Iceland, Latvia, Lithuania, Hungary, Slovakia, Slovenia, Czech Rep, Netherlands	Tender France (wind) Obligation for producers Italy
Demand	Price support for demand	Obligation for consumers or suppliers UK, Sweden, Poland Belgium
	Price	Quantity

RES implementation is a function of support level

RES-E scenario's for 2030 at various subsidy ceilings. Source: ECN's techno-economic RES-E market model ADMIRE-REBUS

Are the RES targets achievable?

25 2 %

24,5%

28,0%

Share of renewable energies in primary energy consumption of EU countries in 2008 (in %). Source: Eurobserver (2009)

Share of each resource in the renewable primary energy production in EU in 2006

Most RES technologies show a double digit growth on installed capacity basis:

Worlwide installed capacity of wind power, MW. Source: Eurobserver (2009)

Evolution of primary energy production from solid biomass for the 27-state EU since 1995* (in Mtoe)

S

Solar PV is the sleeping giant

PV shows double digit growth in 2007 and 2008 in installed d capacity, but this is dampened in 2009 & 2010 by the financial crisis.

PV market has globalised, China is building up PV capacity rapidly

Grid parity expected in Europe in 2015-2020 timeframe

Evolution of worldwide photovoltaic production

Costs of RES

• Cost reduction are a result of learning effects

	2008	2020
	[€MWh]	[€MWh]
Onshore wind		
Germany	105	65 - 75
Netherlands	95	65 - 75
Poland	100	75 - 85
Spain	90	70 - 80
Sweden	105	70 - 80
Offshore wind		
Germany	175	120 - 135
Netherlands	175	120 - 135
Poland	190	130 - 145
Spain	215	150 - 165
Sweden	190	130 - 145
Solar PV		
Germany	450	180 - 200
Netherlands	465	190 - 210
Poland	465	190 - 210
Spain	300	110 - 120
Sweden	490	200 - 220

Projected generation cost of renewable electricity technologies in 2008/2020 (Source : ECN, Lensink, 2010)

For the Netherlands:

 For NL, the EU RES target of 14 % in 2020 can only be reached with intensified policy framework, the 20 % national target is unlikely to be reached in 2020

Policy options in the European context

- Use of flexible mechanisms should be utilized to support RES exploitation
- Some EU members can realize their RES target in another member state
- Making use of specific regional advantages
- Using mechanisms as statistical transfer, joint projects or joint implementation schemes

Outlook beyond 2020

- Main contributions to the 20% EU target are expected from Biomass and offshore wind energy
- Costs of RES technology will drop as a result of learning by doing
- Solar PV will reach grid parity in 2015-2020 and grow to a substantial share of RES-E
- Hydropower reached it classical limit and will only grow modestly

Conclusions on RES targets

Reaching of the 20 % RES target is ambitious

- Along with RES-E, energy demand reductions, biofuels, and the potential in the building sector should be pursued simultaneously
- Longer term: clear target setting remains essential
- Intensification of current market support policies is needed, hybrid system of Feed-in tariff/premium with obligation may be the preferred policy option
- Complete elimination of all subsidies is not possible in the mid-term future as promising technologies such as PV are needed to extend the Renewables potential
- Role of PV is expected to be substantial after 2020
- Stability, consistency of policy measures are the key requirements for market parties

Conclusions on policy measures

- Stability, consistency of policy measures are the key requirements for market parties
- Policies should include the 2050 time horizon and perform back casting (ECF, Eurelectric)
- Use of flexible mechanisms in EU will support RES implementation

Conclusions on renewable electricity

Reaching the 21 % Renewable electricity target requires:

- An effective biomass action plan (as biomass is lagging behind)
- Steps towards a pan-European RES-E market, but with due consideration for technology specific cost attributes
- A harmonized support scheme for renewable heat
- Network improvements and extensions in combination with harmonization of grid access codes and standards
- Regulations enabling a cost-efficient integration of notably intermittent renewable electricity production

