

# Ash from combustion of cacao residue for nutrient recycling: a case study

Jan Pels

**Angelo Saraber** 

ECN-L--10-045 JUNE 2010





# Ash from combustion of cacao residue for nutrient recycling: a case study

Angelo Saraber, Jan Pels, et al.

Ash Conference, Innsbruck, 22-23 March 2010

#### Table of contents

- Introduction
  - Co-firing Consortium ECN/KEMA
  - Biomass ashes in the Netherlands
- Objective: should we return the ashes?
- The cacao case study
  - Nutrient balance in cacao production
  - Two scenarios: back or not
  - Environmental impact analysis
- Conclusions



Ash Conference, Innsbruck

2



#### Co-firing consortium

- Consortium of ECN and KEMA on co-firing biomass and coals
- Ash management one of the topics
- Objective: to ensure that issues related to ashes do not inhibit the growth of biomass fuels for energy production
- Find useful applications for all ashes
- Recycling is one option



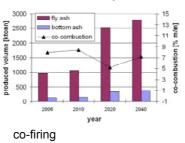
Ash Conference, Innsbruck 22-23 March 2010

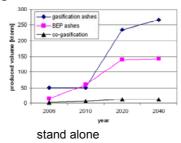
3



#### Bulk of solid biomass fuels in NL

- Co-firing in coal plants
  - > 1,000,000 ton/a clean wood
  - 100% of ashes are utilized
    - · bottom ash in road construction
    - fly as in concrete (EN-450)
  - dominated by coal ash → recycling is no option
- Problems with ashes of "pure" biomass plants
  - wood and park waste, almost no agro residues
  - small CHP plants → many small ash volumes of variable quality and quantity (also over time)
  - ashes blended into building products or land filled





Ash Conference, Innsbruck 22-23 March 2010 4



# Growth of biomass ash volumes in next decades

Prediction: exponential growth after 2010





 Development of new utilisation options needed for 150,000 ton of "pure" biomass ashes



Ash Conference, Innsbruci 22-23 March 2010



## Ash recycling and sustainability

 "Is it possible to recycle the biomass ashes produced in the Netherlands?"



- EU and national criteria for sustainable biofuels: restoring the nutrient balance of the soils
  - → no depletion of nutrients
- Role of biomass ashes?





Ash Conference, Innsbruck 22-23 March 2010 KEMA₹

ECN-L--10-045 5

#### **Nutrient Recycling in Five Cases**

- From scenarios major ash volumes selected
- Five cases for further study:
  - 1. clean wood pellets/chips in FBC
  - 2. residue from rape seed oil pressing in FBC
  - 3. cacao shells in FBC
  - 4. direct co-firing with coal
  - 5. biomass co-firing in EF gasification



Ash Conference, Innsbruck 22-23 March 2010

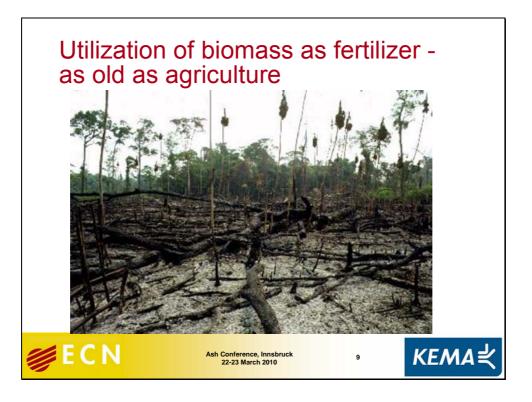
7



#### Cacao shells rationale

- Large cacao industry in region
  Antwerp Amsterdam Hamburg
  - cacao shells are a waste product
  - high calorific value, good fuel, clean fuel
  - nutrients mainly P and K
  - currently used in gardening
  - currently fired in mixed biomass
- Combusted in a dedicates plant
  - separate cacao shells ash, and...
  - ... ashes returned to the plantations








Ash Conference, Innsbruck 22-23 March 2010

8





#### Two scenarios

- Ashes are transported by sea and truck, back to the cacao plantation and replace artificial fertilizer
- 2) Ashes are transported to a mine in Germany and fertilization is done by means of artificial fertilizer



Ash Conference, Innsbruck 22-23 March 2010

10



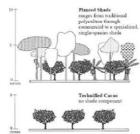
ECN-L--10-045 7

#### How much is available in NL?

- Total import in Netherlands (2006):
  - cacao beans: 450,000 ton/a
  - -10% is shell  $\rightarrow 45,000$  ton/a = 25 MW(th)
- Total ash production
  - ash content of dried cacao shells: 7-9 wt%
  - 80 wt% of ash as useable fly ash in FBC
  - 3000 ton/a recyclable ash
- Composition (calculated)
  - P: 4.2 wt%
  - K: 39 wt%



Ash Conference, Innsbruck 22-23 March 2010


11



#### Cacao case study

- Sustainable plantations use artificial fertilizers and plant cacao trees together with shadow plants
- Ivory Coast exports 1,300,000 ton beans per year;
  40% of World production











Ash Conference, Innsbruck 22-23 March 2010

12



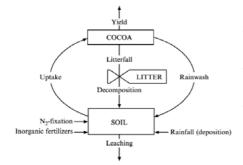
### Cacao harvesting





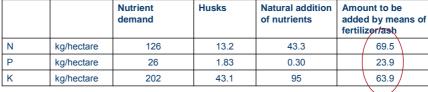





Only beans are shipped, husks and leaves stay at plantation



Ash Conference, Innsbruck 22-23 March 2010




## Nutrient balance of 1 ha plantation



- Productivity: 740 kg dry beans per ha per year
- Residues (husks) already used at plantations
- · Amounts of fertilizers needed is not 100% clear from literature: statistical approach

Natural addition Amount to be added by means of fertilizer/ash of nutrients 43.3 69.5





Ash Conference, Innsbruck 22-23 March 2010

14



## Fertilizer and ash needed for two scenarios

| Scenario 1 | Amount to be added by means of fertilizer/ash | Filter ash | To be delivered by fertilizer | Artificial fertilizer         | Amount needed of artificial fertilizer |
|------------|-----------------------------------------------|------------|-------------------------------|-------------------------------|----------------------------------------|
|            | kg/hectare                                    | kg/hectare | kg/hectare                    |                               | kg/hectare                             |
| N          | 69.5                                          | 0          | 69.5                          | urea                          | 298                                    |
| Р          | 23.9                                          | 0.22       | 23.7                          | tripelsuperfosfaat (48% P2O5) | 112,7                                  |
| K          | 63.9                                          | 2.05       | 61.9                          | potassiumchloride (60% K2O)   | 124,5                                  |
|            |                                               |            |                               |                               |                                        |
| Scenario 2 | Amount to be added by means of fertilizer/ash | Filter ash | To be delivered by fertilizer | Fertilizer                    | Amount needed of artificial fertilizer |
|            | kg/hectare                                    | kg/hectare | kg/hectare                    |                               | kg/hectare                             |
| N          | 69.5                                          |            | 69,5                          | urea                          | 298                                    |
| Р          | 23.9                                          |            | 23,9                          | tripelsuperfosfaat (48% P2O5) | 113,8                                  |
| K          | 63.9                                          |            | 63,9                          | potassiumchloride (60% K2O)   | 128,6                                  |



Ash Conference, Innsbruck 22-23 March 2010

15



# Conclusions used in the Environmental Impact Analysis

- Ashes from combustion of cacao shells can replace a small fraction of artificial fertilizers, about 1 wt%
- Impact measured in terms of emission of CO<sub>2</sub>, NOx and SO<sub>2</sub>
- Ca, Mg and all other (trace) elements are not included in the evaluation
- No social impacts evaluated
- No costs in calculations



Ash Conference, Innsbruci

16



## Environmental impact ≠ LCA

| Process step                                     | Scenario 1 (per hectare) | Scenario 2 (per hectare)                                    |
|--------------------------------------------------|--------------------------|-------------------------------------------------------------|
| Transportation of ash to port in the Netherlands | 5.3 kg ash<br>100 km     |                                                             |
| Transportation of ash to salt mine in Germany    |                          | 5.3 kg ash<br>250 km                                        |
| Transportation of ash to Ivory Coast             | 5.3 kg ash<br>6000 km    |                                                             |
| Transportation of ash to cacao plantation        | 5.3 kg ash<br>800km      |                                                             |
| Production of fertilizer in Ivory Coast          |                          | 1.1 kg<br>tripelsuperfosfaat<br>4.1 kg<br>potassiumchloride |
| Transportation of fertilizer in Ivory Coast      |                          | 5.2 kg fertilizer<br>800 km                                 |

Nearly all process steps are the same, so only the differences are investigated:

- transportation
- fertilizer production

Data from SimaPro and ECLIPSE



Ash Conference, Innsbruck 22-23 March 2010

17



# Comparison of the two scenarios in terms of emissions of CO<sub>2</sub>, NOx and SO<sub>2</sub>

|            | CO2  | NOx  | SO2  |  |
|------------|------|------|------|--|
|            | gram | gram | gram |  |
| Scenario 1 | 947  | 18.1 | 6.9  |  |
| Scenario 2 | 2936 | 19.5 | 16.5 |  |

- Returning ashes to the soils (1) has lowest impact
  - main cause of difference: production of fertilizer
  - transport better in scenario 2
- Fertilizer production outweighs transportation



Ash Conference, Innsbruck

18



#### Sensitivity analysis

- Influence on result:
  - availability of nutrients in ash to cacao plants
  - production of dry beans per hectare
- Small influence on result:
  - transport distance in Ivory Coast
  - thickness of shells
- No influence on result:
  - total nutrient demand of plantation
  - natural NPK input/output in soil
  - recycling of husks for NPK



Ash Conference, Innsbruck 22-23 March 2010

19



#### Conclusions

- Returning ashes from combustion of cacao shells will bring back about 1 wt% of needed fertilizer
- Returning those ashes to the cacao plantation has the lower environmental impact (expressed as emissions of CO<sub>2</sub>, NOx and SO<sub>2</sub>), mainly due to avoided production of fertilizer
- Third option could be even better:
  - Use ashes as fertilizer in NW-Europe
    - the same lower impact of fertilizer production as in scenario 1
    - low transport impact of scenario 2



Ash Conference, Innsbruci

20







## Thank you for your attention

Further contact: Jan Pels

pels@ecn.nl,

+31-224-56-4884