

Process design and evaluation of butanol production from lignocellulosic biomass

Presented at Bioenergy2009 4th International Bioenergy Conference and Exibition on 31st August to 4th September 2009

Jyväskylä - Finland

C.M. Daza Montaño

ECN-L--09-117 September 2009

Energy research Centre of the Netherlands

PROCESS DESIGN AND EVALUATION OF BUTANOL PRODUCTION FROM LIGNOCELLULOSIC BIOMASS

Claudia Daza Montaño

Presentation Outline

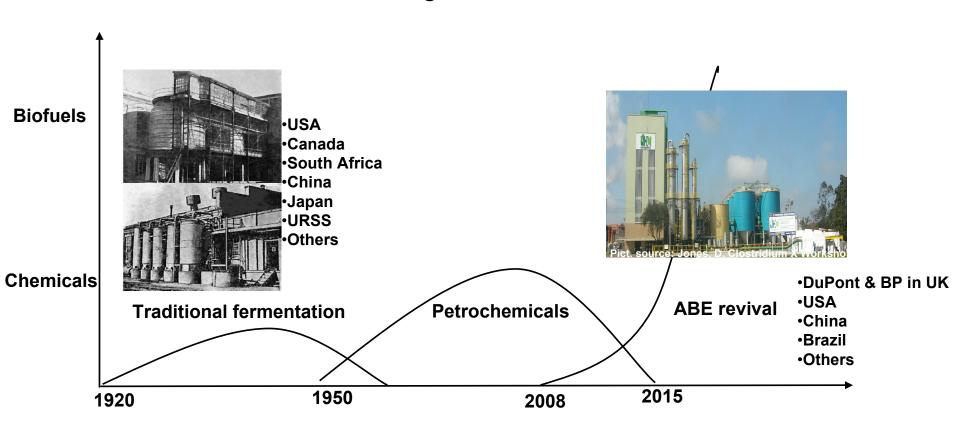
- •Why Butanol?
- •ABE (acetone, butanol, ethanol) fermentation background and state of

the art

- Developed conceptual process design
- Economic evaluation
- Environmental Impact assessment (LCA)
- Conclusions

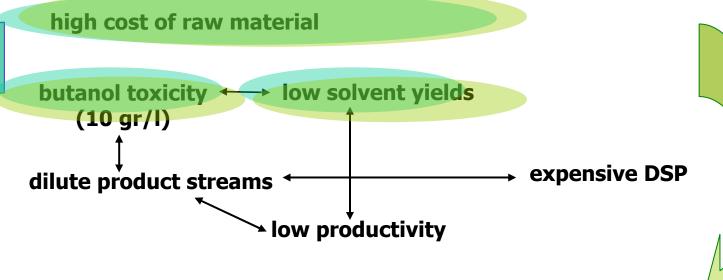
BUTANOL (C₄H₉OH): Bulk chemical and fuel

Butanol is better biofuel than ethanol due to its more favorable chemical/physical properties. But even more valuable as chemical


Properties	1-Butanol C ₄ H ₉ OH	Ethanol C ₂ H ₅ OH
LHV (MJth/kg)	33	27
Solubility (ml/100 ml H ₂ O)	9	miscible
Vapor pressure (mmHg)	5	44
Flash point (°C)	37	15

- **❖Butanol can be shipped and distributed through existing pipelines and filling stations**
- **❖Butanol can be blended with diesel and with gasoline**
- ❖Butanol is a widely used solvent in industry

Acetone-butanol-ethanol (ABE) fermentation


Clostridia strains A:B:E≈ 3:6:1 wt. Sugars and starch

Energy research Centre of the Netherlands

Challenges and research on butanol fermentation

Metabolic and Genetic engineering

- Broad substrate range agricultural and food industry residues
- Solvent tolerant strains
- Thermophilic strains
- Selective product formation

Process technology

- •Upstream: Pre-treatment and hydrolysis
- •Fermentation configuration
- In Situ Product Removal *ISPR*
- •DSP and process integration

Definition of process designed

- •Plant capacity → 100 kton/year bio-butanol (167 kton/year ABE)
- •Lignocellulosic feedstock → Wheat straw

Input 1416 kton/year (d.m)

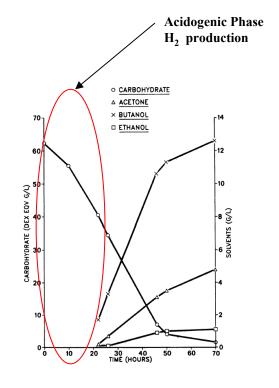
Cost: 31€/ton (d.m.)

- •Mode of operation → Continuous
- In situ product removal technique → Gas stripping

ABE fermentation parameters

Solvent-producing Clostridia beijerinckii NACIMB 8052

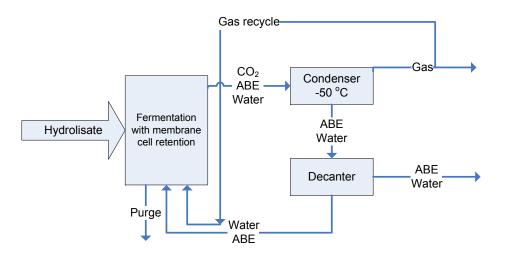
• Wild type - Anaerobic bacteria



M.W. Rajjarinck

•	ypical	yield:	0.3	kg /	A.B.	E/kg) _{sugar} V	vith	3:6:1	mass	ratio
---	--------	--------	-----	------	------	------	----------------------	------	-------	------	-------

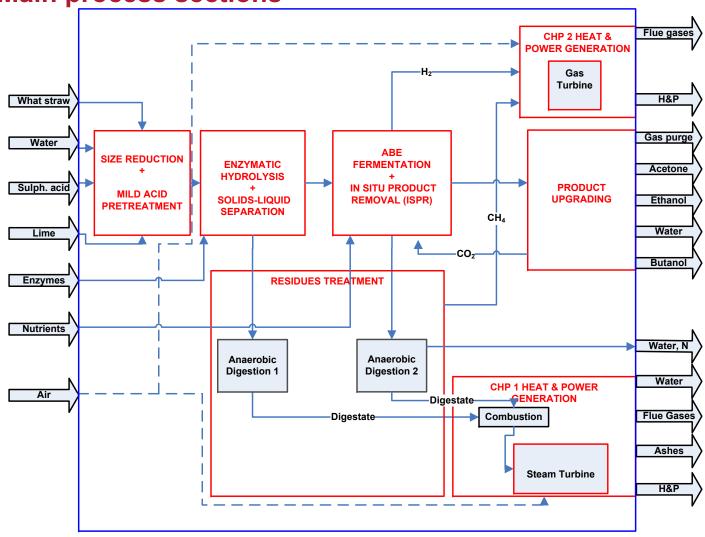
Compound	Formula	wt %
Sugars	CH ₂ O	-
Acetone	C ₃ H ₆ O	9
Butanol	C ₄ H ₉ OH	18
Ethanol	C ₂ H ₅ OH	3
Acetic acid	CH ₃ COOH	1.5
Butyric acid	C ₄ H ₈ O2	1.5
Hydrogen	\mathbf{H}_{2}	1.6
Microbial cells	$CH_{1.8}O_{0.5}N_{0.2}$	12.7
Carbon dioxide	CO ₂	49.7



Product recovery

Product Removal (ISPR) required to optimize fermentation productivity

	Technology	Efficiency	State of development	Scale	Capital cost	Operating cost	Technology status
Dis	stillation	High	Complete	Commercial	Med	High	Commercial
Ga	s Stripping	Medium	Research	Lab	High	High	Research
So	Ivent Extraction	High	Research	Lab	Med	Med	Research
Pei	rvaporation	High	Development	Pilot	High	High	Research
Ad	sorption	High	Research	Commercial	High	Low	Research



Gas stripping advantages:

- Simple technology
- •Selective removal of volatile compounds
- •Use of fermentation off gas (CO₂)
- No toxicity to cells

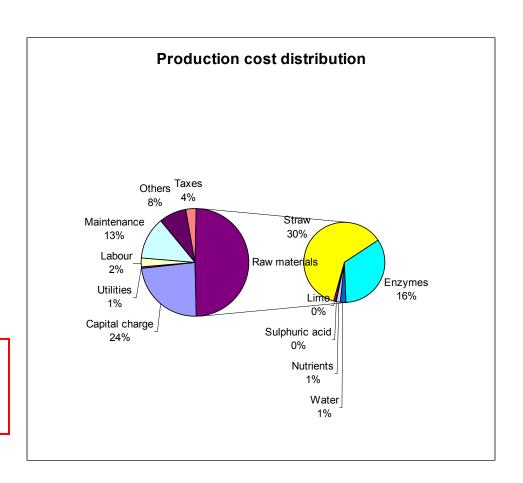
Main process sections

Overall mass & energy balance

Inputs	Kton/year	Value MW
Wheat straw (d.w., 9 wt% ash)	1416	835*
Heat demand		196
Electricity demand		61
Total input		1091
Outputs		
Acetone	50	
Butanol	100	181 *
Ethanol	17	
Heat generation in CHP's		431
Electricity generation in CHP's		196
Total output		808
Net heat surplus		235
Net electricity surplus		136

*(LHV basis)

- •Process energy demand (steam and electricity) fully covered + large electricity export
- •Room for improvement via heat integration
- •Surplus heat could be used for sterilization or for cooling generation via Absorption Refrigeration Plant


Energy efficiency =
$$\frac{\text{Energy content in ABE} + \text{Electricity output}}{\text{Energy input (feedstock)}} = 38\%$$

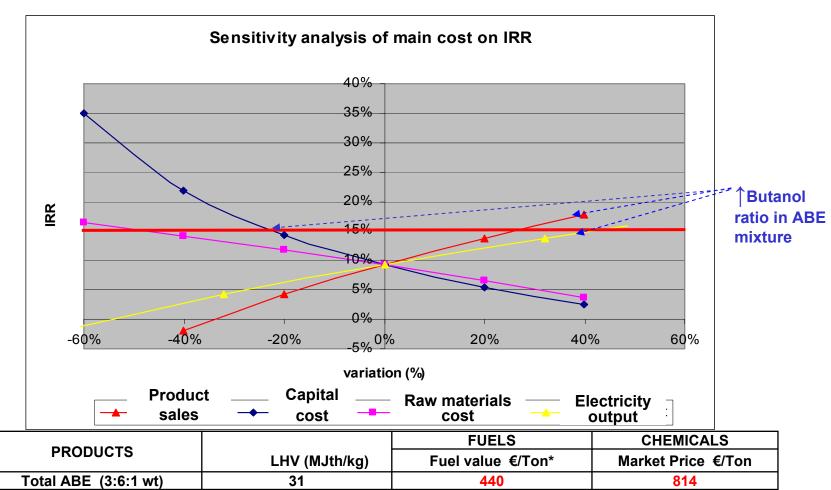
Total production cost

Costs	€/TonABE
Raw materials	421
U tilities	5
Labor	21
Maintenance	110
Others	71
Гaxes	30
Capital charge	204
Fotal gross	862
Total-electricity* sales	408

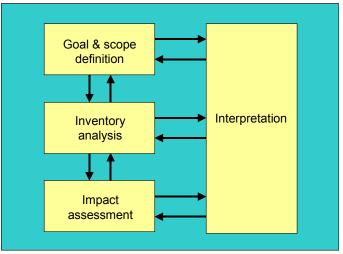
^{* 0.07 €/}kWh

Product sales revenues

	CHEMICALS	PRODUCTION	ANNUAL SALES	PRODUCT VALUE	
PRODUCT	Selling Price €/Ton	Kton/year	M€/year	%	
Acetone	571	50	28	20	
Butanol	929	100	93	68	
Ethanol	857	17	15	12	
Total ABE (3:6:1 wt)	814	167	136	100	

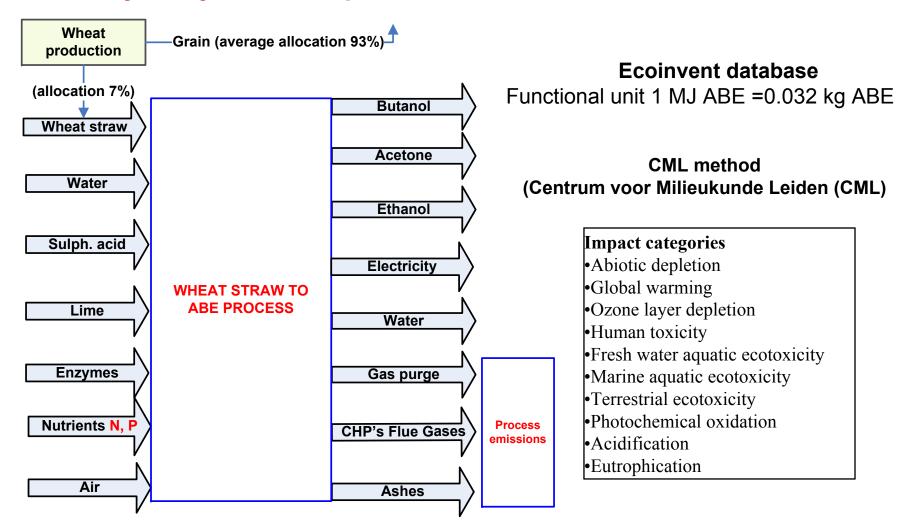

Internal Rate of Return (IRR) = 9,6%

Energy research Centre of the Netherlands


Sensitivity analysis on Internal Rate of Return (IRR)

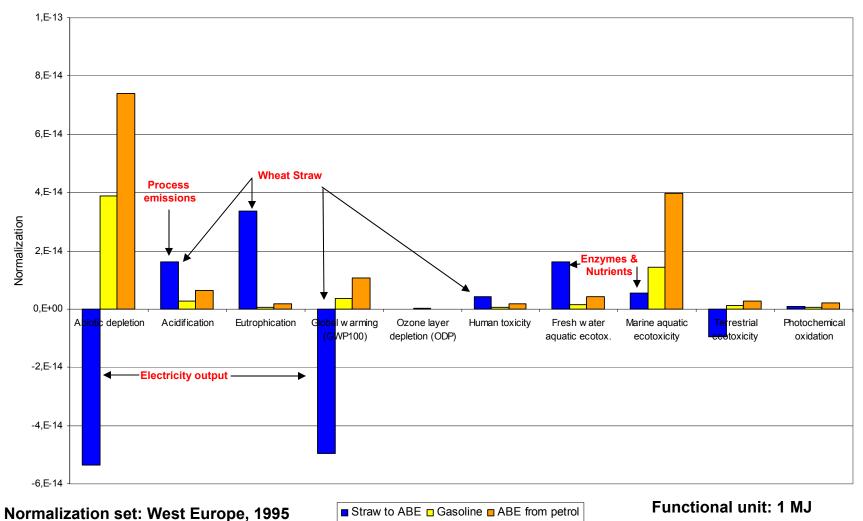
Total ABE sales as chemicals: 136 M€/year IRR=9,6%

Life Cycle Analysis LCA


Life Cycle Assessment framework, with different steps of LCA and their interactions according to ISO standards

The goals of the screening LCA are to assess the environmental impacts of ABE production from straw, in a "cradle to gate" analysis and to compare these impacts with those of ABE petrol-based production and with those of gasoline production.

Software: SimaPro (version 7) www.pre.nl



Inventory analysis and impact assessment

Comparison ABE from wheat straw with gasoline and with petrochemical ABE

Overall conclusions and recommendations

- ❖Wheat Straw to ABE as chemicals = CLOSE TO be economically competitive.
 - o Raw materials are the major cost driver
- ❖Increase of butanol ratio to A:E produced improves energy efficiency and economics
- ❖ Environmental performance: straw-ABE better than petrol-based ABE
 - o Residues conversion into heat and electricity are a key parameter
 - o Major environmental impacts: eutrophication
 - o Recovery of nutrients and production of useful by-products would improve LCA
- ❖ OPTION: Retrofit existing ethanol plants for butanol production

Thank for your attention

Claudia M. Daza Montaño.

daza@ecn.nl

www.ecn.nl

Project website: www.biobased.nl/eosbiobutanol

Acknowledgement

Project partner: Agrotechnology & Food Sciences Group. Wageningen University & Research Centre WUR

This work was supported by the Dutch Ministry of Economic Affairs through the program EOS (Subsidy for Research on Energy), and partly financed by SenterNovem. www.senternovem.nl/eos

Energy research Centre of the Netherlands