

Energy research Centre of the Netherlands

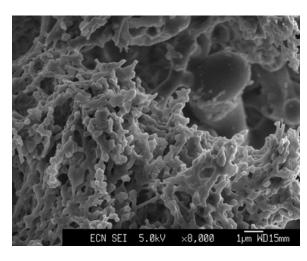
Modified Organosolv

Fractionation of Lignocellulosic Biomass for Production of High Quality Lignin (and Fermentable Sugars)

Wouter Huijgen, Richard Gosselink (WUR-A&F), Ron van der Laan & Hans Reith

Contents

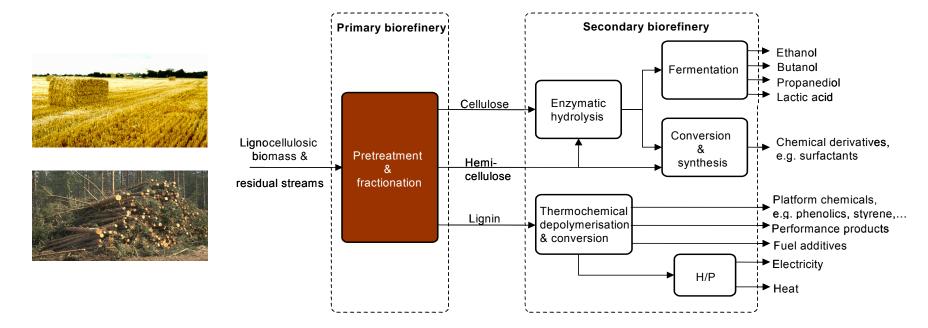
Introduction


- Biomass fractionation / pre-treatment
- Organosolv

Experimental

Results

- Delignification
 - Influence process conditions
 - Alternative solvents
 - Catalysts
- Lignin separation
- Lignin characterisation


Conclusions

Organosolv lignin

Biorefinery

Goals primary biorefinery:

- Enhancement (enzymatic) degradability of cellulose to fermentable sugars.
- Hemicellulose hydrolysis to sugars.
- Extraction of high-quality lignin for production of chemicals.
- → Fractionation of <u>all</u> biomass fractions in a sufficient quality for production of (bio)chemicals.

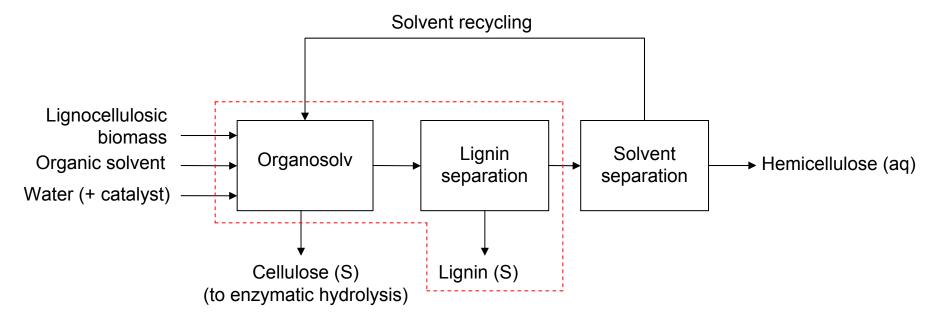
Biomass pre-treatment

Pre-treatment technologies

- Many pre-treatment technologies: steam explosion, ammonia fibre explosion (AFEX), acid hydrolysis, alkaline pre-treatment, etc.
- Different functionalities and characteristics.
- Comparison of technologies → selection of organosolv.

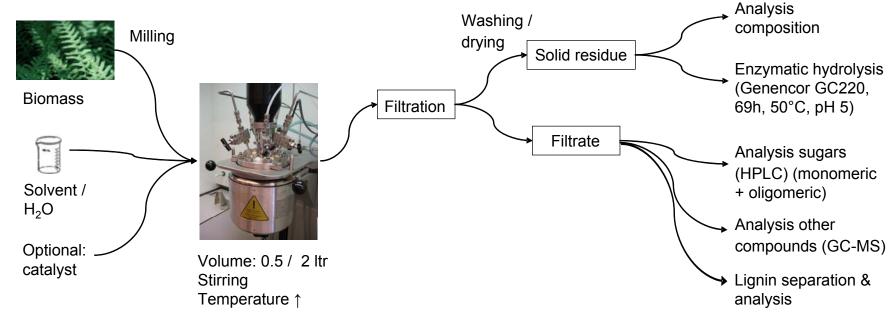
Amorphous Region Crystalline Region Hemicellulose or Starch Mosier et al, 2004

Why organosolv?


- Avoidance waste generation (due to neutralization).
- Minimization formation of fermentation inhibitors.
- Other pretreatments generally produce low quality lignin, only suitable for CHP.

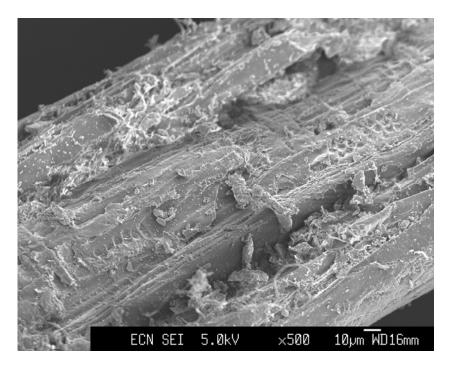
R&D challenges:

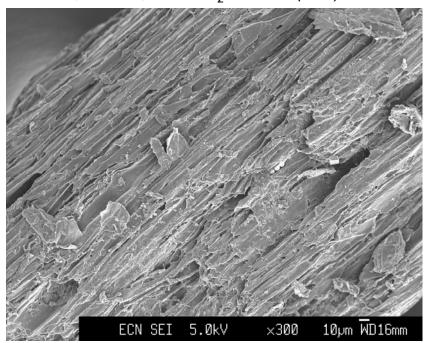
- Organosolv process developed in 70-80's as alternative pulping process.
- Applicability for biorefinery purposes? Adaptations required?
- Reduction of costs and energy consumption (solvent recycling).


Organosolv process

- Typical process conditions (ECN): 160-200 °C, 15-60 min, 5-30 bar.
- Possible solvents: ethanol (standard), methanol, acetone, acetic acid, dioxane, etc.
- → Focus today: delignification, lignin separation and lignin quality.

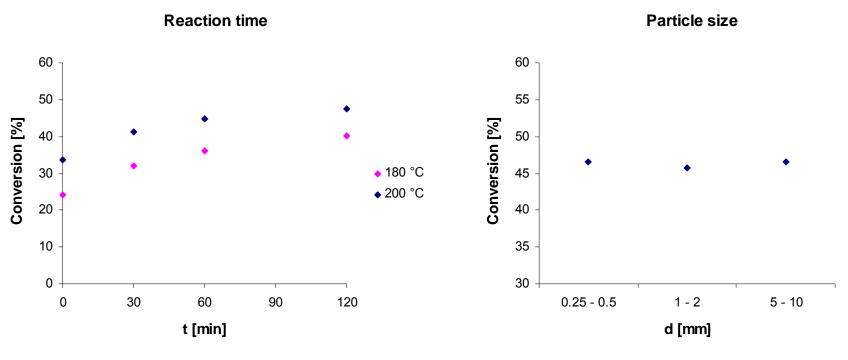
Experimental set-up




Scanning Electron Micrographs

Fresh willow

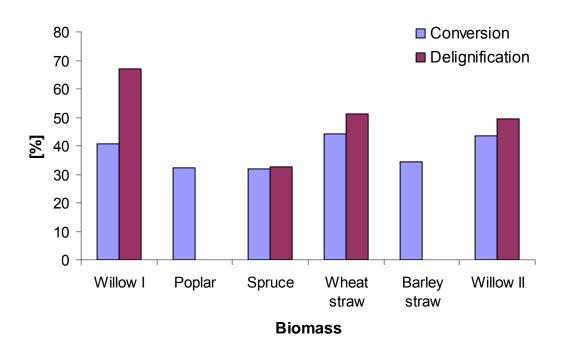
Pre-treated willow


190°C, 60 min, EtOH-H₂O 60:40 (w/w)

- Cellulose fibrous structure remains intact
- Extraction of hemicellulose and lignin
- More open structure → better access for enzymes

Conversion – Influence process conditions

Willow <0.5 mm, EtOH- H_2 O 60:40 (w/w)


Willow, 200 °C, 60 min, EtOH-H₂O 60:40 (w/w)

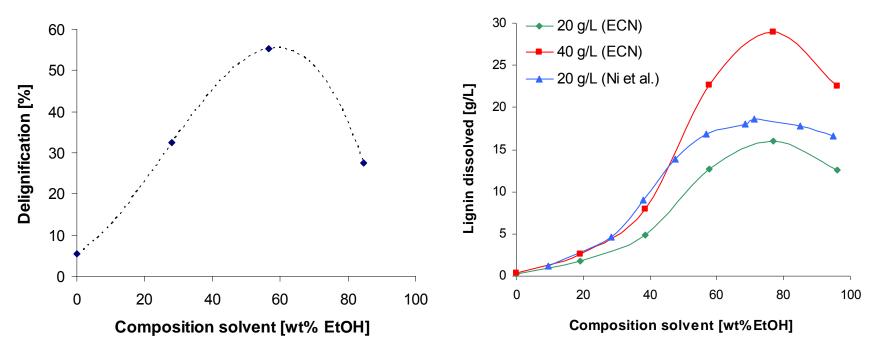
- Influence reaction parameters on conversion tested.
- No effect particle size (0.5-10 mm), L/S-ratio (7-20 L/kg) and stirring rate (100-500 rpm).
- Conversion dependent on biomass, residence time, temperature & solvent composition.
 → delignification.

Biomass type & batch

- Large differences in conversion and delignification between biomass types.
- Also between different batches significant differences occur.

Fresh material (left), pre-treated (right):

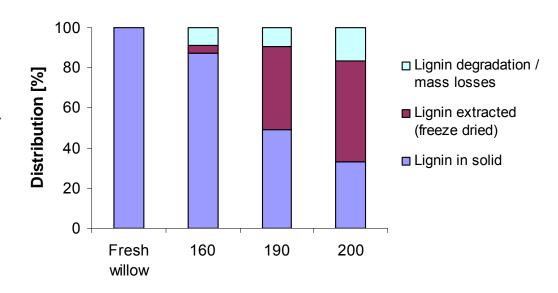
Poplar wood



Wheat straw

200°C, 60 min, EtOH-H₂O 60:40 (w/w)

Ethanol-water ratio

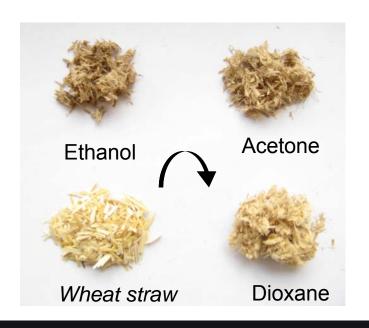

Willow <0.5 mm, 190°C, 60 min

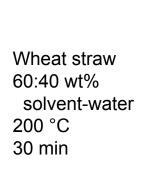
- Ethanol-water ratio solvent major influence delignification (opt around 60 wt% EtOH).
- Solubility of lignin (fragments) dependent on solvent mixture composition.

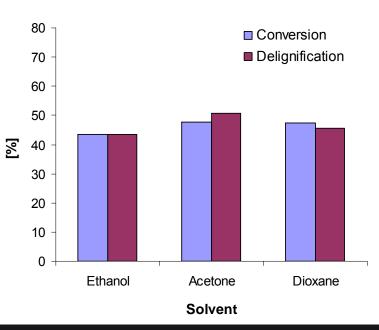
Temperature

- Substantial delignification of willow wood achieved (max ±70%).
- Temperature key process parameter & degradation (inhibitor formation).
 Significant at ≥200°C (similar to hemicellulose hydrolysis).

Reaction temperature [°C]

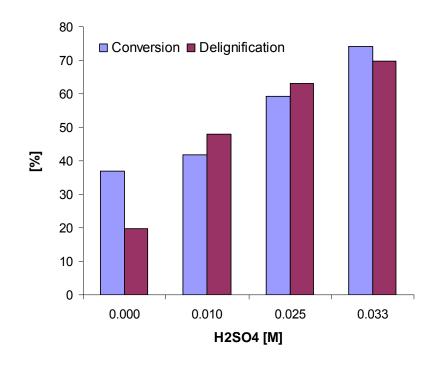

Willow <0.5 mm, EtOH-H₂O 60:40 (w/w), 60 min


• Delignification at milder process conditions → alternative solvents & catalysts.



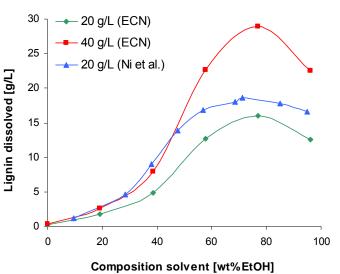
Alternative solvents

- Various solvents tested:
 - Good lignin solvents
 - Including acetone and dioxane
- Colour and structure of biomass indicative for enhanced delignification wheat straw.
- However, differences in conversion and delignification small.
- Lignin solubility in ethanol not limiting at conditions applied?

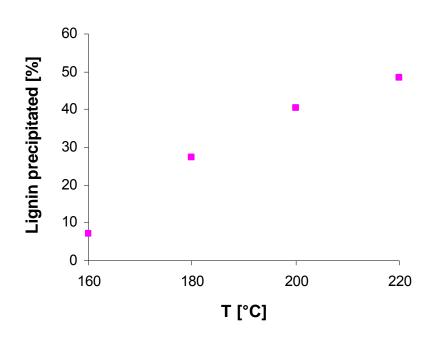


Catalysts

- Different acids, bases and salts were screened.
- Addition of H₂SO₄ resulted in improved delignification.
- Up to 2/3 of lignin extracted.
- Also higher hemicellulose hydrolysis and enzymatic degradability of cellulose.
- However, high formation of degradation products / inhibitors and higher costs.
- Performance at lower temperatures?


Willow 60:40 wt% EtOH-water 200 °C 30 min

Lignin separation


- Adjustment solvent-water ratio.
- Current protocol based upon water addition.
- Future: solvent evaporation to improve energetic performance organosolv process.
- Tested parameters for development protocol:
 - Amount of water
 - Temperature water
 - Stationary phase
 - Rate of addition (presence of air bubbles)
 - pH
 - Settling time
- → Rapid flocculation of lignin.
- Separation by centrifugation and decantation.

Lignin production

160, 180, 200, 220 °C

- Max lignin yield willow (based on lignin content feedstock):
 58% (200°C, 120min) or 68% with addition of H₂SO₄.
- Maxima comparable to delignification determined → almost all lignin separated from filtrate.
- Lignin appearance dependent on process conditions.

Lignin characterisation - I

- Lignin samples produced from willow, poplar and barley straw.
- Organosolv at 180 & 200 °C, 60 min, EtOH-H₂O 60:40 (w/w).
- Subsequent separation by water addition, flocculation & centrifugation.
- No washing applied.
- Elemental composition (200°C):

[wt%]	С	Н	N	0	S
Willow	61.6	6.0	0.9	29.2	0.1
Poplar	63.1	5.9	0.1	29.1	0.0
Barley straw	63.8	6.2	0.7	28.0	0.1

• Biochemical composition (200 °C):

[wt%]	Lignin	Xylan	Other	Sum
Willow	87.9	2.3	1.3	91.5
Poplar	93.7	0.5	0.6	94.7
Barley straw	96.7	1.7	1.2	99.6

- Willow from lignin: first trial. Current precipitation protocol → >94wt% pure lignin.
- Lignin: relatively pure and sulphur-free (main contaminant xylan).

Lignin characterisation - II

Performed by A&F (NL) & VTT (FI).

 Mean molecular weight 	(MW) and	polydis	persity	(PD)):
---	----------	---------	---------	------	----

- Comparable with Alcell lignin.
- Low relative to other types of lignins.

Feedstock / sample	Mw	PD	
Poplar	2419	3.5	
Barley straw	3006	4.1	
Willow	3452	4.1	
Alcell [®]	2985	3.6	

- Mean lignin particle size (volume-based): 61 μm (poplar) and 10 μm (wheat straw).
- ³¹P-NMR:
 - SGH type lignins in different ratios.
 - Lower production temperature (180 instead 200°C): less carboxylic acid groups, more aliphatic OH groups (higher sugar content?).
- Purity and MW distribution indicate suitability of lignin for chemical production.
 - Conversion tests of lignin into e.g. phenols to be performed.

Conclusions

- Delignification very dependent on biomass type, temperature and solvent mixture.
- Lignin produced seems relatively good feedstock for production of chemicals.
- Up to 2/3 lignin isolated with lignin precipitation protocol. However,
 - For delignification high temperature and/or H₂SO₄ use required.
 - For separation large amount of H₂O required.

Future research

- Optimisation organosolv process in order to produce lignin at milder process conditions.
- Development new lignin separation/precipitation protocol based upon evaporation.
 - Solvent integrity and recycling.
 - Development of lignin separation apparatus.
- Lignin conversion tests (see poster P. de Wild).

Thank you for your attention!

More information:

huijgen@ecn.nl www.ecn.nl/bkm/

This work is in part performed in the context of:

SenterNovem EOS-LT