

Organosolv-based Fractionation of Lignocellulosic Biomass for Co-Production of Fuels and Chemicals within a Biorefinery

Wouter Huijgen
Ron van der Laan
Raimo van der Linden
Hans Reith

Presented at
5th International Conference on Renewable Resources & Biorefineries
Gent, 10th-12th June 2009

ECN-L--09-081 June 2009

Energy research Centre of the Netherlands

Organosolv-based Fractionation of Lignocellulosic Biomass for Co-Production of Fuels and Chemicals within a Biorefinery

Wouter Huijgen, Ron van der Laan, Raimo van der Linden & Hans Reith

Contents

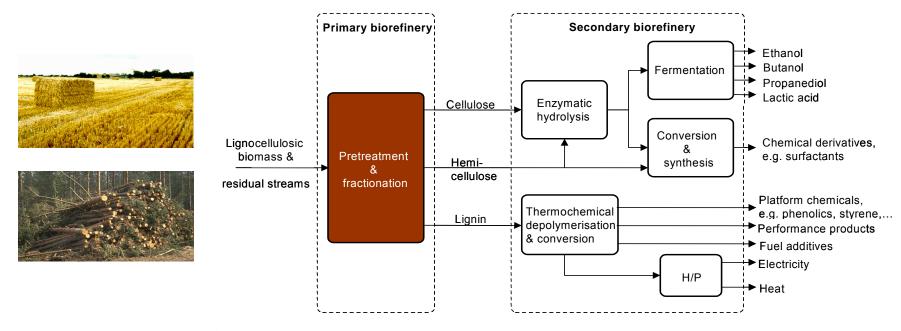
Introduction

- Biomass pre-treatment & fractionation
- Organosolv

Lab-scale fractionation

- Experimental set-up
- · Process conditions
- Biomass feedstock
- Lignin separation & characterisation

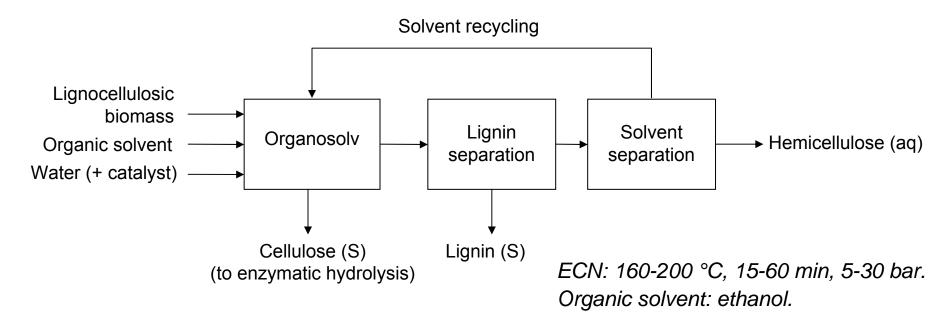
Process simulation


- Solvent recycling
- Energy consumption

Conclusions

Biorefinery

'The sustainable processing of biomass into a spectrum of marketable products and energy' (Definition IEA Bioenergy Task 42 on Biorefineries)

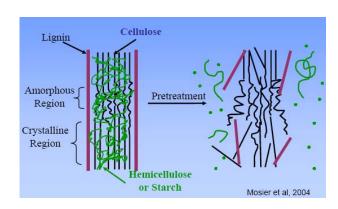


Goals primary biorefinery:

- Fractionation of lignocellulosic biomass into fractions with sufficient quality for production of (bio)chemicals (including lignin).
- Enhancement (enzymatic) degradability of cellulose to fermentable sugars.

Organosolv process

History organosolv:

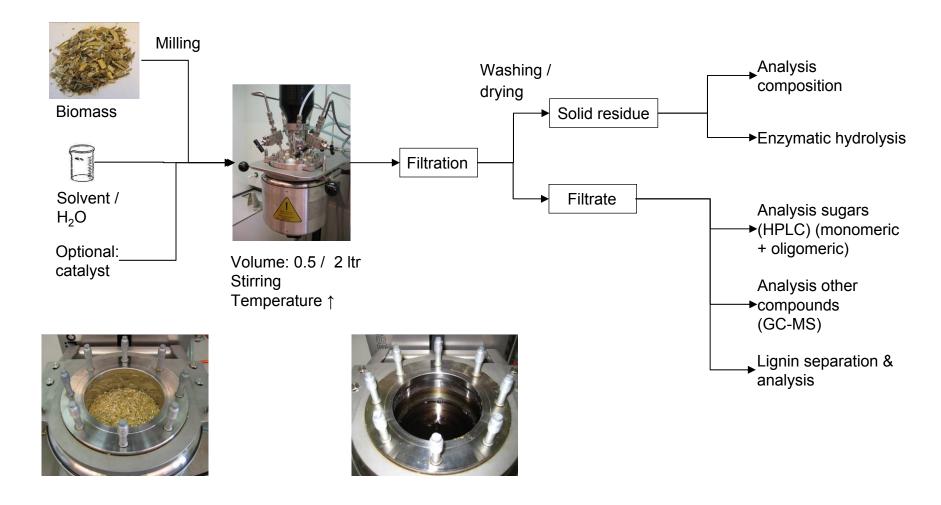

- Original idea: 1931 (Kleinert and von Tayenthal).
- Main developments 1970-90's as alternative pulping process, e.g.:
 - Alcell, ethanol-water, pilot plant 1988, currently Lignol (Canada).
 - Acetosolv etc, acetic and formic acid based, currently CIMV (France, Avidel process).
- R&D challenge: Applicability for biorefinery purposes?

Biomass pre-treatment methods

Various pre-treatment methods, e.g.:

- (Dilute) acid pre-treatment
- Alkaline pre-treatment
- Steam explosion
- Ammonia Fiber Explosion (AFEX)

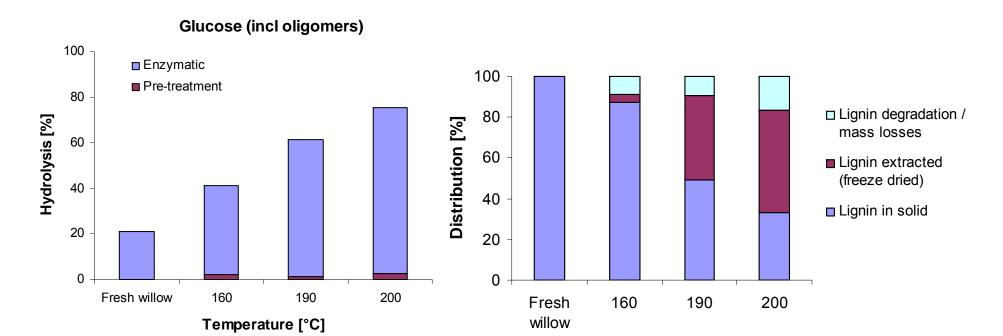
Advantages organosolv:


- Separation lignin before enzymatic hydrolysis & fermentation:
 - High-quality lignin (lignin other pretreatments generally only suitable for CHP).
 - Potentially lower enzyme consumption.
- Avoidance waste generation (due to neutralization).
- Minimization formation of fermentation inhibitors (e.g., furfural).

Disadvantages organosolv:

 Potentially higher costs and energy consumption due to use organic solvent (separation and recycling) and pressurized equipment.

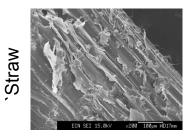
Experimental set-up lab-scale fractionation

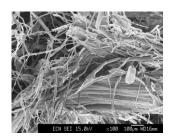

Process parameters

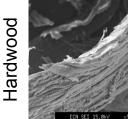
- Extensive parametric study based on willow wood.
- Effect on fractionation and enzymatic hydrolysis of cellulose-enriched fraction.
- Studied variables:
 - Particle size (0.25-10 mm)
 - Solvent mixture : solid ratio (L/S) (5-20 L/kg)
 - Solvent-water ratio (0-85 wt%)
 - Temperature (160-220 °C)
 - Reaction time (0-120 min)
 - Stirring rate (100-500 rpm)
 - Addition of H₂SO₄ as catalyst (0-0.033 M)
- Results presented at RRB4.
- Organosolv probably not mass-transfer limited (within ranges process conditions tested).

Reaction temperature

- Cellulose hydrolysis during pre-treatment negligible.
- Large enhancement of enzymatic hydrolysis cellulose (max ±75%).
- Substantial delignification of willow wood achieved (max ±70%).
- Degradation of sugars and lignin substantial at ≥200°C.

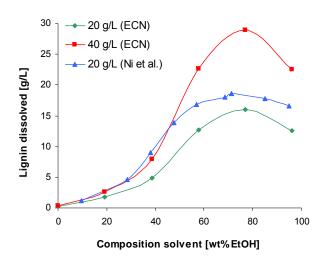

Willow EtOH:H₂O 60:40 wt% 60 min No catalyst


Types of biomass


- Effectiveness organosolv strongly dependent on type of biomass.
- Organosolv less effective for softwoods and (more dense) hardwoods.
- Good pre-treatment of some hardwoods and straws (focus ECN).

Fresh

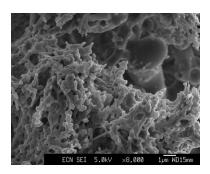
Pre-treated


Biomass	Pulp yield	Xylan hydrolysis	Delignification	Enzymatic degradability
	(dw%)	(%)	(%)	(% cellulose feedstock)
Barley straw	51	80	57	92
Wheat straw	62	45	55	60
Willow	66	50	64	71
Poplar	71	28	ND	39
Spruce	73	NA	33	ND

200°C 60 min EtOH-H₂O 60:40 (w/w)

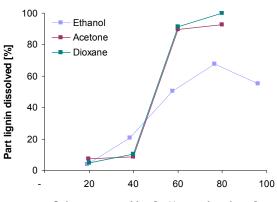
Lignin separation from organosolv filtrate

- Separation by adjusting ethanol-water ratio.
- Lab protocol developed based upon water addition
- → rapid & efficient separation of lignin from filtrate.
- Process simulations: large additional water stream detrimental for energy consumption process.


- Alternative: ethanol evaporation.
- 100% ethanol evaporation not feasible because of structural changes lignin.
- Partial evaporation followed by water addition
- → factor 4 reduction of water consumption.

Lignin characterisation

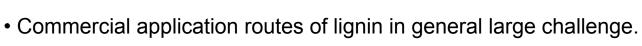
- Lignin: light brown to black (compacted) powder.
- Colour and structure dependent on process conditions organosolv, biomass type and contaminants.
- Lignin relatively pure (88-97 wt% without washing).
- Main contaminant xylan (hemicellulose).
- Purity even higher after washing (Alcell lignin >99%).
- Lignin sulphur- and ash-free (max 0.1 wt% S).
- Solubility: H₂O (none), ethanol & acetone (good).



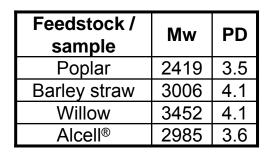
Organosolv lignin

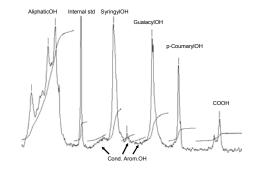
160, 180, 200, 220 °C

Solvent composition [wt% organic solvent]



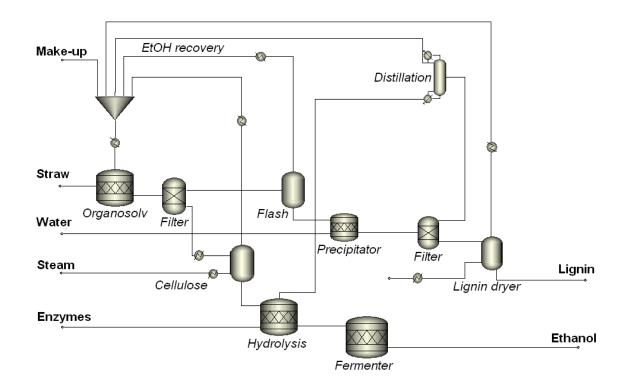
Lignin characterisation - II


- Mean molecular weight (MW) and polydispersity (PD):
 - Low relative to other types of lignins.
 - Comparable with Alcell lignin.


 31P-NMR 	•
-----------------------------	---

- Identification of functional groups.
- SGH type lignins in different ratios depending on feedstock.
- Characterisation indicates suitability organosolv lignin as feedstock for chemical production.

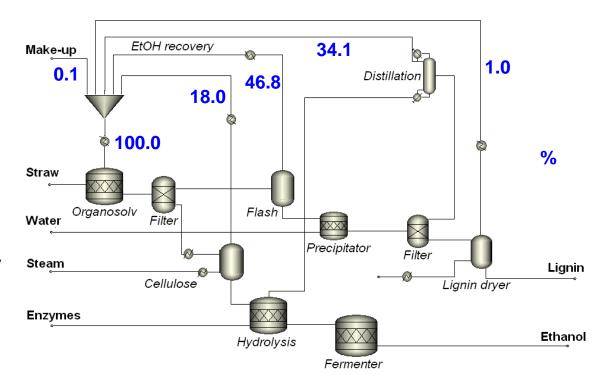
- Conversion tests of ECN organosolv lignin underway.
- Main focus at ECN on lignin pyrolysis & catalytic conversion to produce phenol(ics).



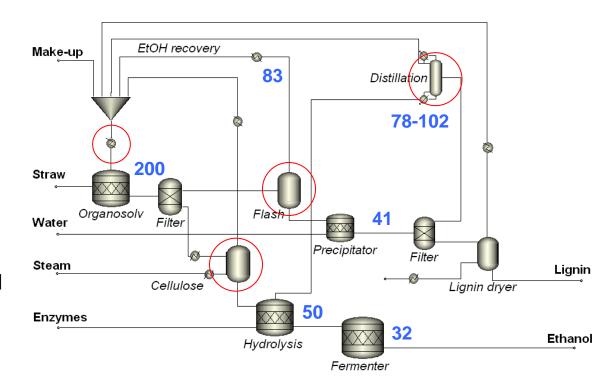
Simulation organosolv process

- Preliminary results.
- Process design made in ASPEN
 → determination of streams and energy consumption.
- Feedstock: wheat straw.
- Process: 200 °C, 60 min,
 EtOH:H₂O 60:40, 5 L/kg.

Recycling:


- 1 ton wheat straw → 0.32 ton EtOH (maximum).
- Solvent: 2.7 ton EtOH/ton straw.
- Recycling degree 99% → 8%
 EtOH production loss.
- Recycling degree >99% required!

Ethanol mass balance


- Recycling degree ethanol set at 99.9%.
- Separation and recycling of ethanol present in cellulose and lignin required!
- Solvent = product!
- Ethanol in cellulose and hemicellulose streams not directly lost.
- Recycling required to avoid product inhibition during fermentation.
- Recycling degree might be slightly lowered to save costs.

Energy consumption

- Large differences in process temperatures.
- Major energy consumers:
 - Ethanol separation for recycling.
 - Heating feed + recycle stream.
- Heat flows significant compared to energy content ethanol produced.
- → Next step: heat integration.

Temperatures (°C)

Conclusions

- Ethanol-based organosolv able to fractionate lignocellulosic biomass.
- Enzymatic hydrolysis cellulose improved substantially.
- Efficient separation of high-quality lignin.
- Characterization lignin: promising properties for conversion to chemicals.
- Recycling organic solvent and heat integration crucial process elements.

Future research

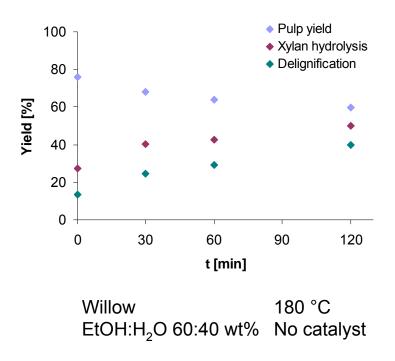
- Development continuous organosolv reactor.
- Solvent integrity and recycling.
- Lignin conversion tests.
- Further development process simulations:
 - Heat integration organosolv plant.
 - Investment and operating costs.

Thank you for your attention!

More information:

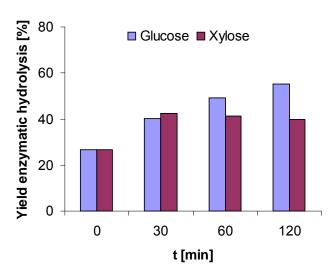
huijgen@ecn.nl www.ecn.nl/bkm/

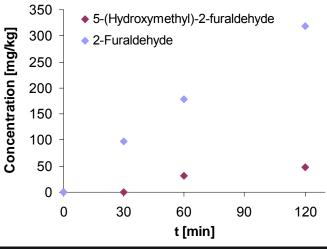
This work is in part performed in the context of:


SenterNovem EOS-LT

See also other BioSynergy presentations by Gianluca Marcotullio (session 6B) and Paulien Harmsen (session 7B).

www.ecn.nl




Kinetics – reaction time

- Increasing sugar degradation with time.
- Optimal reaction time requires economic optimization.

Recycling organic solvent

Simplified calculation:

```
1 ton straw → 0.36 ton glucan
0.22 ton xylan } 0.32 ton EtOH (theoretical maximum)
0.22 ton lignin
```

- Solvent mixture: 2.7 ton ethanol / ton wheat straw processed
 (L/S = 5 L/kg and ethanol : water = 60:40 (w/w))
- Compare maximum ethanol production : solvent in organosolv process
 → factor ~8!
- Recycling degree of 99%
 - → 0.027 ton solvent loss or ~8% of EtOH produced!
- Recycling factor should be high, >99%.